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Abstract—Federated Learning (FL) is a distributed learning
paradigm that enables a large number of resource-limited nodes
to collaboratively train a model without data sharing. The non-
independent-and-identically-distributed (non-i.i.d.) data samples
invoke discrepancy between the global and local objectives,
making the FL model slow to converge. In this paper, we
proposed Optimal Aggregation algorithm for better aggre-
gation, which finds out the optimal subset of local updates of
participating nodes in each global round, by identifying and
excluding the adverse local updates via checking the relationship
between the local gradient and the global gradient. Then, we
proposed a Probabilistic Node Selection framework (FedPNS) to
dynamically change the probability for each node to be selected
based on the output of Optimal Aggregation. FedPNS can
preferentially select nodes that propel faster model convergence.
Experimental results demonstrate the effectiveness of FedPNS in
accelerating the FL convergence rate, as compared to FedAvg
with random node selection.

Index Terms—Federated Learning, Edge Intelligence, Mobile
Edge Computing, Node Selection.

I. INTRODUCTION

As the rapid growth of computational capability at mobile
edge sides, next-generation computing network is experiencing
a paradigm shift from traditional cloud computing to Mobile
Edge Computing (MEC) systems [1]. Edge nodes such as
sensors, mobile devices, and connected vehicles are generating
an unprecedented amount of data consistently, and coupled
with cutting-edge Machine Learning (ML) techniques, the
MEC system is able to conduct intelligent inference (e.g., road
congestion prediction) and perceptive control (e.g., unmanned
aerial vehicles (UAVs) swarm navigation [2]). With the ever-
increasing computational capability on edge nodes, it becomes
more attractive to perform model training on the edge node
side instead of sending raw data to the edge server. To
this end, Federated Learning (FL) has emerged as a variant
of the Distributed ML (DML), which decouples the data
acquisition and model training at the edge server [3], facilitates
collaboration across nodes, and guarantees privacy.

In general, FL systems aim to optimize a global model under
the orchestration of an edge server, which allows the collabora-
tion of multiple edge nodes for data augmentation while keep-
ing training data locally. FL involves several communication
rounds, each of which includes local model training, model
update transmission, and global model aggregation. Along the
iterative process, the edge server is able to train a statistical
model that is suitable for all participating nodes without
accessing user-sensitive data of edge nodes. The improved data

confidentiality and reduced volume of communication cost
making FL one of the most promising technologies for future
network intelligence [4]. Nonetheless, a fundamental challenge
for FL is the data heterogeneity [5], [6]. Specifically, data
samples across participating nodes may not be independent
and identically distributed (non-i.i.d.). Training on nodes with
non-i.i.d. dataset will lead to the biased model update, which
stagnates model convergence and reduces the model accuracy,
and consequently invokes additional communication rounds to
resource-constrained edge nodes [6], [7].

To improve the convergence rate of FL on non-i.i.d. data,
a series of studies concentrate on the algorithmic perspective,
aiming to reduce communication rounds in FL. These studies
include adaptive local training [5], weighting design for model
aggregation [7], and node selection [8]–[12]. The algorithm
FedProx proposed by Li et al. [5] uses a regularization
term to balance the optimizing discrepancy between global
and local objectives and allows participating nodes to perform
a variable number of local updates, to consequently overcome
the non-i.i.d. data distribution and resource heterogeneity. Au-
thors in [7] exhibited a contribution-related weighting design,
namely FedAdp to boost the convergence rate of FL with
non-i.i.d. data samples, which assigns distinguished weight for
participating nodes according to their contribution.

In general, FL algorithms randomly select a subset of nodes
(i.e., partial node participation) in each round to participate in
local training (e.g., FedAvg [3], FedProx [5]). Given the
data heterogeneity across local nodes, it is not trivial to design
node selection schemes that prompt faster convergence. Most
of the existing works exploited system heterogeneity and the
channel condition [8], [9], [11] to select nodes. Specifically,
Nishio et al. [8] proposed to select nodes intentionally based
on the resource condition on nodes. Amiria et al. [9] designed
a node scheduling algorithm by considering the significance
of local update measured by `2 norm and channel condition
separately or jointly. Chen et al. [10] designed a probabilistic
model to make node selection where the probability for each
node to be selected is proportional to the norm of local
gradient. Similar criteria are adopted in [11], [12], where
the significance of local update is evaluated by its gradient
divergence. None of the aforementioned node selection designs
analyzed the impact of data heterogeneity on node selection.

In this paper, we design a node selection scheme to
improve the convergence rate of FL with non-i.i.d nodes,
called FedPNS, which is a Probabilistic Node Selection



framework with contribution-related criteria. Different from
the above probabilistic node selection designs, our work in
this paper builds on the data heterogeneity perspective and
designs a probabilistic model to choose participating nodes.
The proposed method scrutinizes the relationship between
local gradients and the global gradient so as to adjust the
probability for each node to be selected, which is different
from the criteria (i.e., the norm of local gradient/update)
adopted in [9]–[12]. Particularly, we find out the global model
aggregation over all participating nodes is not of necessity,
whereas excluding some adverse local updates may lead to
a better global model in terms of training loss. In order to
improve the expected decrement of FL loss in each round,
we propose an Optimal Aggregation algorithm to de-
termine the optimal subset of local updates to be aggregated,
which utilizes the inner product between the local gradient
and the global gradient1 as an indicator. By applying the result
from Optimal Aggregation, the data heterogeneity can
be profiled, which is used to adjust the probability for each
node to be selected in the subsequent global rounds. Conse-
quently, the server can preferentially select nodes that propel
faster model convergence.

II. PRELIMINARIES

In this section, we introduce the key ingredients behind FL,
including the system model and the practical algorithm design.

A. Federated Learning Model

In general, federated learning methods [3], [5], are designed
to handle the consensus learning task in a decentralized
manner, where a central server coordinates the global learning
objective and multiple devices train the local model with
locally collected data. Consider a network with K local nodes
(i.e., i ∈ {1, 2, · · · , |K|}), where each node i possesses a local
(private) dataset Di with size Di . The nodes are connected
with a central server and seek to collaboratively find a global
model parameterized by w that minimizes the empirical risk,

F(w) =
1∑ |K |

i=1 Di

|K |∑
i=1

∑
{x,y }∈Di

f (w, x, y), (1)

where f (w, x, y) is the composite loss for training sample
{x, y}. Specifically, in the context of C-class classification
problem hereinafter, each training sample {x, y} ∈ Di is
assumed to contain a feature vector x and label y over feature
space X and label space Y (i.e., Y = [C], where [C] =
{1, · · · ,C}). For each available training sample {x, y} ∈

⋃
i Di

in the FL problem, the FL model parameterized by w is
considered to learn the predicted probability vector ȳ, i.e.,
ȳ|

∑C
j=1 ȳj = 1, ȳj ≥ 0, ∀ j ∈ [C], with empirical risk. From

a federation perspective, the global objective F(w) in (1) is
surrogated by local objective Fi(w) and can be represented as

F(w) =
|K |∑
i=1

Di∑ |K |
i=1 Di

Fi(w), (2)

1We use local/global gradient and local/global update interchangeably.

For each node i, Fi(w) commonly measures the empirical
risk (e.g., cross entropy loss) over the dataset Di with possibly
different data distribution q(i), which is defined as follows

Fi(w) = Ex,yvq(i)

−
C∑
j=1

1y=j loglj (w, x, y)


= −

C∑
j=1

q(i)(y = j)Ex |y=j
[
loglj (w, x, y)

]
, (3)

where lj(w, x, y) denotes the probability that the data sample
{x, y} is classified as the j-th class given model w. q(i)(y = j)
denotes the data distribution on node i over class j ∈ [C].

B. FedAvg with Partial Node Participation

The most commonly used algorithm to solve (2) is Fed-
erated Averaging (FedAvg) [3], where the training consists
of multiple communication rounds. At each communication
round t, the server selectes a fraction c of nodes |St | = c |K|
to participate in the training. Taking the global model wt−1 in
previous round as the reference, each participating node i ∈ St

performs τ steps of local Stochastic Gradient Descent (SGD)
to optimize its objective

wt
i = wt−1 − η∇Fi(wt−1), (4)

where η is the learning rate and ∇Fi(·) is the gradient2 at node
i. (4) gives a general principle of SGD optimization, where
wt
i is the result after τ local updates of mini-batch SGD (i.e.,

τ = Di

B E , where E is the number local training epochs, B is
the batch size of mini-batch training samples).

The participating nodes then communicate their model
update ∆ti = wt

i − wt−1 back to the server, which aggregates
them and updates the global model3 as follows

∆
t =

1
|St |

∑
i∈St

∆
t
i

wt = wt−1 + ∆t . (5)

Though FedAvg can achieve a decent convergence rate with
trivial node selection policy and simple averaging design,
model performance on non-i.i.d. dataset is not satisfactory [6],
[7]. In trivial node selection policy (e.g., random selection in
FedAvg), the distribution of data samples on selected nodes
q(i) differs from each other. Local updates lead the model
towards optima to its local objective, which may deviate from
the global objective in a non-i.i.d. setting, causing training
instability that makes the FL model struggle to converge.
Therefore, it is crucial to analyze the node selection policy
from the data heterogeneity perspective; identifying and choos-
ing the nodes that contribute better to model convergence.

2Through this paper, the gradient refers to the stochastic version instead of
the actual gradient calculated from the entire dataset.

3It is worth mentioning that the aggregation scheme is applied over all
nodes in the vanilla FedAvg [3], i.e., ∆t =

∑
i∈St

ψi∆
t
i +

∑
i∈K−St

ψiwt−1,
where ψi = Di/(

∑|K|
i=1 Di ). The subsequent work [5] proposed a variant of

aggregation over participating nodes as in (5). Hereinafter, FedAvg denotes
the algorithm that involves random selection and partial aggregation of nodes
with equal data size [5].



III. CONTRIBUTION-BASED NODE SELECTION

In this section, we design a probabilistic node selection
scheme to improve the convergence rate of federated learning.
For FL with the heterogeneous dataset, we analyze the con-
vergence property of FedAvg theoretically (Section III-A). In
Section III-B, we challenge the necessity of the global model
aggregation over all participating nodes. Then, the Optimal
Aggregation algorithm is proposed, which can exclude
the adversarial local updates to make greater progress in
reducing the expected decrement of global loss in each round.
Finally, the FL with Probabilistic Node Selection (FedPNS) is
proposed based on the result of Optimal Aggregation.

A. Convergence Analysis

For theoretical analysis purposes, we employ the follow-
ing assumptions to the loss function, which have also been
commonly made in the literature [5], [13], [14].

Assumption 1. L-Lipschitz smooth.
Fi(w) is L-Lipschitz smooth for all node i.

Assumption 2. δ-local dissimilarity.
Local loss functions Fi(wt ) are δ-local dissimilar at wt ,
i.e., EivSt

[
‖∇Fi(wt )‖2

]
≤ ‖∇F(wt )‖2δ2 for i ∈ St and

t = 1, · · · ,T , where T is the number of global rounds.
EivSt [·] denotes the expectation over participating nodes St

with weight 1
|St |

(as in (5)). ∇F(wt ) is the global gradient at
the t-th global round defined as ∇F(wt ) = 1

|St |

∑
i∈St
∇Fi(wt ).

Theorem 1. Let assumptions 1 and 2 hold. Suppose that wt is
not a stationary solution, the expected decrement on the global
loss of FedAvg between two consecutive rounds satisfies

F(wt+1) ≤ F(wt ) − ηEivSt

[
〈∇F(wt ),∇Fi(wt )〉

]
+

Lη2

2
‖∇F(wt )‖2δ2, (6)

where 〈·〉 is the inner product operation, and ‖ · ‖ denotes the
`2 norm of a vector.

The proof of Theorem 1 is omitted due to the page limit.
Theorem 1 provides a bound on how rapid the decrease of the
global FL loss can be expected. The decrease of global FL loss
between two consecutive rounds shows a dependency on δ,
which represents the variance between local data distributions,
and the aggregation strategy EivSt [·], where ∇F(wt ) is ob-
tained by aggregating over local updates from all participating
nodes, i.e., ∇Fi(wt ), i ∈ St with weight 1/|St |.

B. Aggregation with Gradient Information

In the vanilla FedAvg [3] and the subsequent work [5], [6],
the averaging technique is used for global update aggregation
due to its simplicity. One can challenge the inherent rule
that the global update is aggregated over local updates of
all participating nodes since the local updates may contribute
global model in an adverse way. As a sanity check, at any
communication round t, the local update from the participating
nodes whose inner product between their gradients and global
gradient is negative i.e., 〈∇F(wt ),∇Fi(wt )〉 < 0, will slow

the model convergence because of the reduced expected loss
decrement (i.e., a lower expectation value as in (6)) in this
round. As such, it is not trivial to exclude the adverse local
updates, which is realized by examining the value of expecta-
tion term in Theorem 1, as illustrated later. Excluding adverse
local updates gives an impact on the reduction of overall data
heterogeneity, thus changes the relationship between the local
gradient and the global gradient 〈∇F̄(wt ),∇Fi(wt )〉, where
∇F̄(wt ) = 1

|S̄t |

∑
i∈S∗t ∇Fi(wt ) is defined over S∗t , i.e., the

subset of participating nodes St after successfully excluding
the nodes with adverse local updates.

To find the optimal subset of local updates to aggregate, we
first check the expectation term EivSt

[
〈∇F(wt ),∇Fi(wt )〉

]
in

Theorem 1 and exclude the local updates from participating
nodes k, i.e., k ∈ St − S̄t if EivS̄t

[
〈∇F̄(wt ),∇Fi(wt )〉

]
>

EivSt

[
〈∇F(wt ),∇Fi(wt )〉

]
is satisfied. However, excluding

local updates gives an impact on the global update and
overall data heterogeneity, i.e., ‖∇F(wt )‖2δ2, the last term
on the right hand side of (6), which makes the expected
decrement of global loss, i.e., ∆F(wt ) =

Lη2

2 ‖∇F(wt )‖2δ2 −
ηEivSt

[
〈∇F(wt ),∇Fi(wt )〉

]
, difficult to be analyzed quantita-

tively given L and δ. Therefore, in the second step, test loss is
adopted to ensure that excluding local updates makes global
update better in terms of model convergence. In particular, the
global model wt+1 and w̄t+1 generated by ∇Fi(wt ), i ∈ St and
∇Fi(wt ), i ∈ S̄t , respectively, are evaluated using mini-batch
of samples with size B̄ that are sampled uniformly at random
from Dtest (e.g., test dataset in MNIST).

An iterative algorithm called Optimal Aggregation is
proposed for a better local update aggregation in each round,
which finds the optimal subset of local update ∆i, i ∈ S∗t ⊆ St

by excluding the adverse local updates ∆k , k ∈ St − S∗t , as
in Algorithms 1. Specifically, for a given set of participating
nodes St in each global round t, the server iteratively removes
one of the local updates ∇Fi(wt ), i ∈ St , generates the potential
global gradient, and calculates the expectation term in (6)
(i.e., CHECK EXPECTATION, line 18-21). If excluding one
local update gives a higher expectation value, compared with
the case that includes all local updates retained in St , that
local update will be labeled, and loss comparison will be
performed to check the loss criterion (CHECK LOSS, line 22-
25), otherwise the server keeps all local updates (line 6). If the
loss criterion is satisfied (line 13), the labeled local update is
eventually removed from set St (line 14). Otherwise, the server
keeps that local update retained in St (line 12). The process
repeats until no adverse local update can be found or the
number of remaining local updates is below a threshold v (line
4). In Algorithm 1, the function pop is defined as removing
element (line 14). The introduced “temp” is a dictionary with
key-value pairs (line 5) and the function max returns the
maximum value (line 6) or the key (i.e., the node index i)
corresponding to that value (line 9), respectively.

Given a set of participating nodes St , the benefits of finding
optimal local updates are twofold: (i) Excluding the potential
local updates that contribute to the global model adversely



Algorithm 1 Optimal Local Updates for Aggregation
Procedure OPTIMAL AGGREGATION
Input: St , ∆ti , v, temp = {}

1: ∇F(wt
i
) = −∆t

i
/η

2: ∇F(wt ) = 1
|S̄t |

∑
i∈St
∇Fi(wt )

3: max = EivSt

[
〈∇F(wt ),∇Fi(wt )〉

]
4: while |St | ≥ v do
5: temp ← CHECK EXPECTATION (∇Fi(wt ), St , temp)
6: if max(temp).value < max do
7: break with S∗t = St
8: else
9: key = max(temp).key

10: ls(w), ls(w̄), S̄t ← CHECK LOSS (∇Fi(wt ), St , key)
11: if ls(w) > ls(w̄) do
12: break with S̄t , S∗t = St
13: else
14: St,S∗t ← St .pop(key)
15: max ← temp(key).value
16: return S∗t , S̄t
17: wt+1 ← GLOBAL UPDATE (∇Fi(wt ), S∗t )
Procedure CHECK EXPECTATION
Input: ∇Fi(wt ), St , temp
18: for i = 1, · · · , |St | do
19: S̄t ← St .pop(St [i])
20: ∇F̄(wt ) = 1

|S̄t |

∑
i∈S̄t
∇Fi(wt )

21: temp(St [i]) = EivS̄t

[
〈∇F̄(wt ),∇Fi(wt )〉

]
Procedure CHECK LOSS
Input: ∇Fi(wt ), St , key
22: S̄t ← St .pop(key)
23: Generate global model wt+1 by ∇Fi(wt ), i ∈ St and w̄t+1 by
∇Fi(wt ), i ∈ S̄t , respectively

24: Evaluate wt+1, w̄t+1 by using mini-batch samples from Dtest
and get the loss ls(w) and ls(w̄), respectively

25: return ls(w), ls(w̄), S̄t
Procedure GLOBAL UPDATE
Input: ∇Fi(wt ), S∗t
26: Generate wt+1 by ∇Fi(wt ), i ∈ S∗t via (4) and (5)
27: return wt+1

results in a larger decrement of the expected loss in each
round. (ii) By CHECK EXPECTATION, the potential adversarial
nodes k, k ∈ St − S̄t (nodes with non-i.i.d. dataset normally)
are identified. This identification can be used for consequent
probabilistic node selection, as illustrated in Section III-C.

C. Probabilistic Node Selection

Under the context of probabilistic node selection, it is
natural to lower the node selection probabilities for those
nodes whose local updates slow model convergence. There-
fore, on the server-side, we propose to dynamically change
the probability for each node to be selected via using the
output of Optimal Aggregation (i.e., S̄t ). In particular,
the probabilities for those nodes that are labeled by the pro-
cedure CHECK EXPECTATION (i.e., i ∈ St − S̄t ) are decreased
according to the parameter x in (7), and the probabilities for
all the rest nodes will be increased.

∆pti = pti · min[(x + β)
α, 1], i ∈ St − S̄t, (7)

where pti and ∆pti denote the probability for node i to be
selected in the t-th global round, and its probability decrement

Algorithm 2 FL with Probabilistic Node Selection
Procedure FEDERATED OPTIMIZATION
Input: E, B, η,K,T, pt

i
i = 1, · · · , |K|

1: Server initializes w0, p0
i
= 1/|K|

2: for t = 1, · · · ,T do
3: Server samples a subset St of nodes according to pt−1

i
4: Server sends wt to nodes i ∈ St
5: Each node i ∈ St finds wt

i
to optimize Fi(wt ) using

SGD, as in (4), and sends back ∆t
i

to the server
6: wt+1, S̄t ← OPTIMAL AGGREGATION
7: Server updates the probability pt

i
i = 1, · · · , |K| by (7)

and (8) for next round’s usage
8: return wT

Procedure OPTIMAL AGGREGATION
Input: St , ∆ti , v, temp = {}

9: Direct to Algorithm 1
10: return wt+1, S̄t

in next round, respectively. min function returns the minimum
value among all arguments, x ∈ (0, 1] is defined as the ratio
between the accumulated times that a node is labeled by the
procedure CHECK EXPECTATION and the accumulated times
that the node is selected, α ∈ Z+, β ∈ [0, 1] are coefficients as
explained in the following.
• limx→ε xα + β ≈ 1, where ε ∝ α is constant.
• lim0→x→υ xα + β ≈ β, where υ ∝ α is a constant.
α controls how big the probability decrement is achieved

by (x + β)α given a ratio x. For example, a large value
of α brings an aggressive decrement since the probability
decrement happens in a wide range (β, 1) as x increases
within a small range (υ, ε), making the probability drop very
quickly when x grows. Meanwhile, the large α makes node
selection sensitive to the identification mistake, which may
prevent i.i.d. nodes from being selected in the subsequent
rounds. However, setting a small value of α is not consistently
effective to differentiate the nodes since the probability change
is marginal. β is adopted to keep the rate of probability
change in a visible range [β, 1]. From experiments, we find
out α = 2, β = 0.7 is a good choice that balances the tradeoff.

After getting the probability change for the labeled nodes
(i.e., i ∈ St − S̄t ), we equally increase the probability for all
the rest nodes i ∈ K − (St − S̄t ), as shown in (8).

pt+1
i =

{
pt
i
− ∆pt

i
i ∈ St − S̄t

pt
i
+

∑
i∈St −S̄t

∆pt
i

|K−(St−S̄t ) |
i ∈ K − (St − S̄t )

, (8)

where pt+1
i , i ∈ K are used for the (t + 1)-th round.

The proposed FL design with probabilistic node selection
and optimal aggregation is summarized in Algorithm 2.

IV. EVALUATION AND ANALYSIS

We now present empirical results for the proposed prob-
abilistic node selection strategy on image classification task
using MNIST and CIFAR-10 dataset with different learn-
ing objectives. Meanwhile, the commonly used benchmark
FedAvg is adopted as comparison. We first demonstrate the
effectiveness of the proposed Optimal Aggregation in
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Fig. 1. Performance of proposed Optimal Aggregation. (1) Upper: The
training loss on the MNIST dataset when different aggregation strategies are
adopted. Optimal Aggregation and FedAvg aggregate local updates
over S∗t and St , respectively. (2) Bottom: We use a triple to observe the
result of Optimal Aggregation. The upper and bottom row refer to the
results for i.i.d. nodes and non-i.i.d. nodes, respectively.

enlarging the expected decrement of FL global loss and in
identifying the potential adversarial nodes (Section IV-A).
Then, the superiority of the proposed FedPNS in the presence
of various data heterogeneity is illustrated in Section IV-B.

Through the experimental result, unless otherwise specified,
we evaluate the accuracy of the trained models using the
testing set from each dataset. The fraction for selecting nodes
is set to be c = 0.2, |St | = c |K| = 10, Di = 200, B = 20,
E = 1, T = 200, η = 0.01, decay rate = 0.995, v = 0.7,
B̄ = 128. The overall data heterogeneity is measured by σ
and the skewness of dataset on non-i.i.d. nodes is represented
by ρ. For example, σ = 0.2, ρ = 2 means that σ |K| = 10
nodes are equipped with i.i.d. dataset, where non-i.i.d. dataset
lay on the rest (1−σ)|K| = 40 nodes, and the data samples on
which are evenly belong to 2 labels. As such, a smaller value
of σ and ρ indicates a higher data heterogeneity.

A. Performance of Optimal Aggregation

We conduct an experiment to illustrate the performance of
the proposed Optimal Aggregation algorithm. Particu-
larly, we train a CNN model4 on MNIST dataset. The data
heterogeneity is set to be σ = 0.5, ρ = 1. In each global
round, we randomly select |St | = 10 nodes while guaranteeing

4The CNN model has 7 layers with the following structure: 5 × 5 × 10
Convolutional → 2 × 2 MaxPool → 5 × 5 × 20 Convolutional (50% dropout)
→ 2×2 MaxPool→ 320×50 Fully connected→ 50×10 Fully connected→
Softmax. ReLu activation applies to convolutional and fully connected layers.

the participating nodes include half i.i.d. nodes and half non-
i.i.d. nodes. To avoid the randomness of node selection, the
participating nodes in each round are kept as the same for
FedAvg [5] and the proposed Algorithm 1.

As shown in the upper part of Fig. 1, the proposed
Optimal Aggregation algorithm can achieve lower
training loss than FedAvg. When the global model is not
robust in several initial rounds, the local updates are more
diverse due to the data heterogeneity, thus excluding adverse
local updates is more effective. We count the accumulated
times that each node is selected, labeled by the procedure
CHECK EXPECTATION (line 7 in Algorithm 1), and finally
excluded by the procedure CHECK LOSS (line 14 in Algorithm
1). As we can see from the bottom part of Fig. 1, i) the i.i.d
nodes (i.e., with index “0”, · · · , “24”) are never excluded, yet
some of the non-i.i.d nodes (e.g.,“26”, “27”, “34”, etc.) have
been excluded many times. ii) Almost all non-i.i.d. nodes were
labeled at least one time, which illustrates the effectiveness of
Optimal Aggregation in identifying the nodes with the
skewed dataset.

B. Comparison between FedPNS and FedAvg

In this section, we use different combinations of σ and
ρ to investigate the performance of the proposed FedPNS
scheme in the presence of different data heterogeneity. The
Multinomial Logistic Regression (MLR) model and CNN
model are adopted to represent convex and non-convex learn-
ing objectives, respectively. Through all experiments, α and
β are chosen to be 2 and 0.7 respectively. The number of
communication rounds T is set to be 100 for MLR.

As we can tell from Fig. 2, FedPNS converges faster
and achieves a higher test accuracy, compared with FedAvg
for both MLR and CNN models regardless of different data
heterogeneity. FedPNS achieves better improvement when the
CNN model is adopted, compared with the scenario when
the MLR model is utilized, which attributes to the limited
learning capability of MLR. In addition, it is observable that
as the data becomes more heterogeneous, the performance
enhancement is enlarged (i.e., α decreases from 0.5 to 0.2
for a given β, or β changes from 2 to 1 for a given α).
When the number of i.i.d. nodes is limited and the non-
i.i.d nodes are equipped with highly skewed dataset (e.g.,
σ = 0.2, ρ = 1 and σ = 0.3, ρ = 1), FedPNS gains remarkable
performance improvement, which verifies the effectiveness of
FedPNS in identifying and selecting the nodes that contribute
global model better. For the scenario with the lowest data
heterogeneity (i.e., σ = 0.5, ρ = 2), the performance gap
between FedPNS and FedAvg is not obvious. This is because
the impact of the non-i.i.d. nodes on the convergence is
reduced when a large number of i.i.d. nodes can be selected.

For the more complex three channel image classification
task over CIFAR-10 dataset, the number of local epoch is
set to be E = 5. As we can see from the lower subplots
of Fig. 2, compared with FedAvg, FedPNS converges faster
and leads to a higher test accuracy, especially for the high
data heterogeneity scenario (i.e., σ = 0.2 and 0.3, ρ = 1). The
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Fig. 2. Test accuracy over communcation rounds of FedPNS and FedAvg with different data heterogeneity. Upper and middle subplots correspond to training
performance on MNIST dataset when the MLR model and CNN model are adopted, respectively. The lower subplots show the result on CIFAR-10 dataset.

performance improvement of FedPNS is not obvious when
σ = 0.2, ρ = 2, this is because the small number of i.i.d.
nodes with less heterogeneous data samples on non-i.i.d. nodes
makes FedPNS hard to distinguish the node contribution.

V. CONCLUSION

In this paper, we have presented our design of FedPNS
algorithm, a probabilistic node selection strategy that can
preferentially select nodes to boost model convergence of FL
with non-i.i.d. datasets. FedPNS adjusts the probability for
each node to be selected in each round based on the result
of the proposed Optimal Aggregation algorithm, which
is able to find out the optimal subset of local updates from
participating nodes and excludes the adverse local updates
for a better model aggregation, by measuring the relationship
between the local gradient and the global gradient from
participating nodes. Experimental results have shown that FL
training with FedPNS accelerates model convergences and
leads to higher test accuracy over the widely adopted MNIST
and CIFAR-10 datasets, as compared to FedAvg.
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