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Fast-Convergent Federated Learning
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Abstract—Federated learning (FL) enables resource-
constrained edge nodes to collaboratively learn a global
model under the orchestration of a central server while
keeping privacy-sensitive data locally. The non-independent-
and-identically-distributed (non-IID) data samples across
participating nodes slow model training and impose additional
communication rounds for FL to converge. In this paper, we
propose Federated Adaptive Weighting (FedAdp) algorithm
that aims to accelerate model convergence under the presence of
nodes with non-IID dataset. We observe the implicit connection
between the node contribution to the global model aggregation
and data distribution on the local node through theoretical and
empirical analysis. We then propose to assign different weights
for updating the global model based on node contribution
adaptively through each training round. The contribution of
participating nodes is first measured by the angle between the
local gradient vector and the global gradient vector, and then,
weight is quantified by a designed non-linear mapping function
subsequently. The simple yet effective strategy can reinforce
positive (suppress negative) node contribution dynamically,
resulting in communication round reduction drastically. Its
superiority over the commonly adopted Federated Averaging
(FedAvg) is verified both theoretically and experimentally. With
extensive experiments performed in Pytorch and PySyft, we
show that FL training with FedAdp can reduce the number
of communication rounds by up to 54.1% on MNIST dataset
and up to 45.4% on FashionMNIST dataset, as compared to
FedAvg algorithm.

Index Terms—Federated learning, communication efficiency,
mobile edge computing, Internet of Things.

I. INTRODUCTION

THE RAPID advancement of edge devices (e.g., Internet of
Things (IoT), mobile phones) is constantly generating an

unprecedented amount of data [1]. These devices are currently
equipped with enhanced sensors, computing, and communi-
cation capability. Coupled with the rise of Deep Learning
(DL) [2], the edge devices unfold the countless opportuni-
ties for various tasks of modern society, e.g., road congestion
prediction [3] and environmental monitoring [4].

In the traditional cloud-centric approaches, data generated
and collected by edge devices is uploaded and processed in
a data center. It is predicted that the data generation rate will
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exceed the capacity of today’s Internet in the near future [5],
Mobile Edge Computing (MEC) has naturally been proposed
to incorporate the data processing outside the cloud [6], [7].
With computing and storage capability, MEC systems gen-
erally consist of end-edge-server architecture. Multiple edge
servers are capable of performing large-scale distributed tasks
involving local processing and remote execution under the
coordination of a remote cloud. MEC approaches compro-
mise training efficiency and communication cost by bring-
ing model training towards where the data is generated.
However, computation offloading task and data processing at
the edge server still involves the transmission of sensitive
data.

In either centralized cloud training or MEC approaches,
collecting data for model training is unrealistic from a pri-
vacy, security, regulatory, or necessity perspective. In order to
maintain privacy-sensitive data and to facilitate collaborative
machine learning (ML) among distributed nodes, Federated
Learning (FL) has emerged as an attractive paradigm, where
local nodes collaboratively train a task model under the orches-
tration of a central server without accessing end-user data [8],
[9]. In FL, local nodes cooperatively train an ML model
required by the central server by utilizing their local data.
Through transferring local model updates to the central server
for model aggregation and acquiring a global model for local
training rather than sending raw data, user data privacy is well
protected. As such, FL features from conventional approaches
in data acquisition, storage, and training. FL has been deployed
by major service providers and plays an important role in
supporting privacy-sensitive applications, including computer
vision, natural language processing, and medical database [10].

Even though good convergence performance of FL approach
is shown, owing to limited connectivity of wireless networks,
the availability of local nodes and straggler of participating
nodes, communication cost becomes a critical bottleneck in
FL context since generally several iterations are involved for
model converging [8]–[10]. Another fundamental challenge
for FL is strongly non-independent-and-identically-distributed
(non-IID) and highly skewed data across local nodes. The pres-
ence of non-IID data significantly degrades the performance
of federated learning, which makes model training take more
rounds to converge, and the variance caused by non-IID data
brings instability to the training process [11]–[13]. Since the
completion time of federated learning is largely impacted
by the communication time, how to reduce the communi-
cation round for model convergence in FL, especially for
participating nodes with non-IID datasets, is urgent to be
addressed.
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In this paper, to surmount the slow convergence of vanilla
Federated Averaging (FedAvg) [8] under the presence of
non-IID dataset, we propose Federated Adaptive Weighting
(FedAdp) algorithm that aims to improve the performance of
federated learning through assigning distinct weight for partic-
ipating node to update the global model. We observe that nodes
with heterogeneous datasets make different contributions to the
global model aggregation. Therefore, our main intuition is to
measure the contribution of the participating node based on
the gradient information from local nodes then assign differ-
ent weights accordingly and adaptively at each communication
round for global model aggregation. According to node con-
tribution, the proposed adaptive weighting strategy is capable
of reducing the expected training loss of FL in each commu-
nication round under the presence of non-IID nodes, which
accelerates the model convergence. Our main contributions in
this paper are as follows:

• We identify the presence of nodes with non-independent-
and-identically-distributed (non-IID) data distributions
slows the convergence speed of federated learning. In
addition, we analyze the convergence bound of gradient-
descent based federated learning from a theoretical per-
spective and derive the convergence bound that incor-
porates the non-IID data distribution across participating
nodes and weighting strategy for model updating.

• We observe the implicit connection between data distri-
bution on a node and the contribution from that node
to the global model aggregation, measured at the central
server-side by inferring gradient information of partici-
pating nodes. The convergence bound is lowered, and the
convergence speed is accelerated by a carefully designed
weighting strategy, which is formalized as Federated
Adaptive Weighting (FedAdp), that assigns different
weights to nodes for global model aggregation in each
round of communication.

• We empirically evaluate the performance of the proposed
weighting algorithm via extensive experiments using dif-
ferent real datasets with different learning objectives (i.e.,
convex and non-convex loss function). Our experimental
results have shown that FL training with FedAdp can
drastically reduce the communication rounds compared
with the commonly adopted FedAvg algorithm.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III provides the prelimi-
naries of federated learning and the impact of non-IID data on
FL. In Section IV, the convergence analysis and the proposed
weighting algorithm are presented. Experimental results are
shown in Section V. Section VI presents the conclusion.

II. RELATED WORK

Generally, the FL algorithm adopts synchronous aggrega-
tion and selects a subset of nodes randomly to participate in
each round randomly to avoid long-tailed waiting time due to
the network uncertainty and straggler. To boost convergence
and reduce the communication rounds, tuning the number of
local updates [8], [13], [14], [15], and selecting appropriate
nodes for FL training [12], [16], [17] are the usually adopted
approaches.

In particular, McMahan et al. [8] presented the vanilla
Federated Averaging (FedAvg) algorithm, which increases
the number of local updates instead of updating the local
model one time at each round. Li et al. [13] proposed to
allow participating nodes to perform a variable number of local
updates, rather than applying the same amount of workload for
each node [8], to consequently overcome the heterogeneity of
the system. Similar to [13], authors in [15] also posed local
accuracy for participating nodes, based on limited computing
resources on nodes, as an index to steer the number of local
updates performed. Different from [13], [15], the work in [14]
exposed an analytical model to dynamically adapt the number
of local updates between two consecutive global aggrega-
tions in real-time to minimize the learning loss under a fixed
resource budget of the edge computing system. Regarding the
node selection, Nishio and Yonetani [16] proposed FedCS
algorithm to do node selection intentionally rather than ran-
domly, based on the resource conditions of local nodes.
Authors in [17] utilized gradient information to do node selec-
tion. The node whose inner product between its gradient vector
and the global gradient vector is negative will be excluded
from FL training.

To handle the non-IID data distribution, Zhao et al. [11]
quantified the weight divergence by earth mover’s distance
between data distribution on nodes and population distribu-
tion. However, the strategy of pushing a small set of uniformly
distributed data to participating nodes in [11] violates the pri-
vacy concern of FL and imposes extra communication cost.
It was proposed in [12] that communication rounds can be
reduced effectively by selecting nodes based on their uploaded
model weights, which profile the data distribution on those
nodes. In contrast, Wang et al. [18] proposed to identify the
irrelevant update caused by different data distribution at the
node side. The communication cost is accordingly reduced by
precluding these nodes with irrelevant updates before updates
transmission. However, local nodes are required to check the
relevance in each round using the global model kept in the
previous round, which is in contravention of FL and brings
computational burdens to local nodes.

Regarding the weighting strategy, authors in [19] proposed
to assign different weights for global model aggregation
adaptively by considering the time difference when the
model update is done in a layerwise asynchronous manner.
Chai et al. [20] designed a tier-based FL system by dividing
the participating nodes into tiers according to their respond-
ing time and devised to adaptively assign weights to different
tiers for model aggregation since there exists different updat-
ing frequency across tiers. Both methods in [19], [20] aim to
weigh the local update along with different communication
rounds.

To enhance the convergence of FL with the presence of
non-IID nodes, different from [11], [12] that measure model
weight, we find out that nodes contribute differently to the
global model aggregation owing to their different data distri-
bution, and there exists an implicit connection between data
distribution and gradient information. In this paper, we propose
to measure the node contribution quantitatively by the angle
between the local gradient of each participating node and the
global gradient across all participating nodes at the server-side.

Authorized licensed use limited to: York University. Downloaded on February 09,2022 at 01:41:04 UTC from IEEE Xplore.  Restrictions apply. 



1080 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2021

With the quantified contribution, the weight for aggregating the
global model can be devised discriminatively across the nodes
and adaptively in each round according to node contribu-
tion. The proposed adaptive weighting strategy can effectively
speed up the convergence of FL in the presence of non-IID
data. Different from [17], [18], our method does not impose
additional communication and computation burden to local
nodes. Besides, our adaptive weighting strategy is done in each
communication round, which is orthogonal with the methods
proposed in [19], [20].

III. PRELIMINARIES

In this section, we briefly introduce key ingredients behind
the recent method for federated learning, FedAvg, and show
how non-IID data impacts model convergence.

A. Standard Federated Learning

In general, federated learning methods [8], [10] are designed
to handle the consensus learning task in a decentralized man-
ner, where a central server coordinates the global learning
objective and multiple devices training the local model with
locally collected data. In particular, assume that we have N
local nodes with dataset D1, . . . ,Di , . . . ,DN and we define
Di � |Di | as the number of data samples owned by each
node, where | · | denotes the Cardinality of sets. FL methods
aim to minimize:

min
w

F (w) �
N∑

i=1

ψiFi (w), (1)

where w is global model weight, ψi = Di/
∑N

i ′=1Di ′ is the
weight for aggregation in FL training, and global objective
function F(w) is surrogated by using local objective function
Fi (w), which is defined, as an example, in the context of
C-class classification problem thereinafter. In particular, C-
class classification problem is defined over a feature space X
and a label space Y = [C ], where [C ] = {1, . . . ,C}. For
each labeled data sample {x, y}, predicted probability vec-
tor ỹ is achieved by using mapping function f : X → Ỹ ,
where Ỹ = {ỹ|∑C

j=1 ỹj = 1, ỹj ≥ 0, ∀j ∈ [C ]}. As such,
Fi (w) commonly measures the local empirical risk over pos-
sibly different data distribution p(i) of node i, which is defined
by using cross entropy for C-class classification as follow,

min
w

Fi (w) � Ex,y�p(i)

⎡

⎣−
C∑

j=1

1y=j logfj (x,w)

⎤

⎦

= −
C∑

j=1

p(i)(y = j )Ex|y=j

[
logfj (x,w)

]
, (2)

where fj (x,w) denotes the probability that the data sample x
is classified as the j-th class given model w, and p(i)(y = j )
denotes the data distribution on node i over class j ∈ [C ].

In general federated learning setting (e.g., FedAvg), the
participating nodes perform local training with the same
training configuration (e.g., optimizer, learning rate, etc). At
each communication round t, a subset of the nodes St , |St | =

K � N are selected and global model w(t − 1) in previous
iteration is sent to the selected nodes. Each of the participating
nodes i performs stochastic gradient descent (SGD) training to
optimize its local objective Fi (w):

wi (t) = w(t − 1)− η∇Fi (w(t − 1)), (3)

where η is the learning rate and ∇Fi (·) is the gradient at
node i. (3) gives a general principle of SGD optimization.
wi (t) could be the result after one or several local updates
of SGD (e.g., τ = 1 in FedSGD [8] or τ > 1 in
FedAvg [8], [14] with τ denoting the number of local updates
between two consecutive global rounds). Hereinafter, SGD is
applied to mini-batch data samples with size B̄ . As such, local
model is updated by τ = Di

B̄
E times, where Di and E are the

number of training samples on node i and the number of local
training epochs, respectively.

The nodes then communicate their local model updates
Δi (t) = wi (t) − w(t − 1) to the central server,1 which
aggregates them and updates the global model accordingly,

Δ(t) =

|St |∑

i=1

ψiΔi (t)

w(t) = w(t − 1) + Δ(t). (4)

B. FedAvg for Non-IID Data

The independent and identically distributed (IID) sampling
condition of training data is important that the stochastic gra-
dient is an unbiased estimate of the full gradient [14]. FedAvg
is shown to be effective, given that the data distribution
across different nodes is the same as centrally collected data.
However, the data distribution determined by usage patterns
across local nodes is typically non-IID, i.e., p(i) is different
across participating nodes.

Since local objective Fi (w) is closely related with data dis-
tribution p(i), a large number of local updates lead the model
towards optima of its local objective Fi (w) as opposed to the
global objective F(w). The inconsistency between local models
wi and global model w is accumulated along with local train-
ing, leading to more communication rounds before training
converges. As such, local training with multiple local updates
potentially hurts convergence and even leads to divergence
with the presence of non-IID data [8], [11].

We conduct an experiment to demonstrate the impact of
non-IID data on model convergence. We train a two-layer
CNN model with the same neural network architecture in [8]
using Pytorch on the MNIST dataset (containing 60,000 sam-
ples with 10 classes) until the model achieves 95% test
accuracy. 10 nodes are selected, each with 600 samples that are
selected based on their label criteria. If a node is at IID setting,
600 samples are randomly selected over the whole training set.
If a node is at x-class non-IID setting, 600 samples are ran-
domly selected over a subset, which is composed of x class
data samples. Each class of the x-class is selected at random

1Typically there are two ways for nodes to upload their local model to the
server, either by uploading model parameters w(t) or by uploading the model
difference Δi (t). Although the same amount of data are to be sent in both
ways, conveying Δi (t) is proven to be more amenable for compression [9].
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Fig. 1. Test accuracy over communication rounds of FedAvg with hetero-
geneous data distribution over participating nodes. X IID + Y non-IID (1)
(or (2)) represents X nodes are at IID setting and Y nodes are at 1-class (or
2-class) non-IID setting.

and can be overlapped. The skewness of datasets is measured
and reflected by the value of x.

We use the same notations for FedAvg algorithm as [8]: B̄ ,
the local minibatch size, and E, the number of local training
epochs. In this experiment, B̄ = 32, E = 1, η = 0.01 and
learning rate decay of 0.995 per communication round. We
can conclude from Fig. 1:

• Model convergence highly depends on IID nodes. The
presence of non-IID nodes imposes variance to model
training, which slows the convergence of FL (e.g., 5 IID
case converges faster than 5 IID + 5 non-IID (1) case).

• The skewness of data affects model convergence. With
the participation of the non-IID node, the model con-
verges much slower when the skewness of the dataset
increases (e.g., 3 IID + 7 non-IID (2) case converges
much faster than 3 IID + 7 non-IID (1) case).

IV. FEDERATED ADAPTIVE WEIGHTING

In this section, we develop our methodology for improv-
ing the convergence rate of federated learning. We first analyze
the convergence property of federated learning (Section IV-A).
The theoretical analysis on the expected decrease of FL loss
in each round of training reveals that gradient information and
data distribution impact the convergence. The experimental
result shows the diversity of node contribution in reducing
the FL loss in each round (Section IV-B), measured by the
local gradient of each node and the global gradient from par-
ticipating nodes. This motivates us to assign weight adaptively
according to node contribution for global model aggregation.
Finally, we theoretically prove that assigning weight based
on node contribution adaptively leads to accelerating model
convergence and formally present the methodology of the
proposed FedAdp algorithm (Section IV-C).

A. Convergence Analysis

For theoretical analysis of federated learning algorithms, we
employ the following typical assumptions in our analysis (see,
e.g., [11], [13], [14], [17]).

Assumption 1 (β-Lipschitz Smoothness): Fi (w) is β-
Lipschitz smoothness for each of the participating nodes

i ∈ St , i.e., ‖∇Fi (w) − ∇Fi (w
′)‖ ≤ β‖w − w′‖ for any

two parameter vectors w, w′.
Based on Assumption 1, the definition of F(w), and triangle

inequality, we can easily get the following lemma.
Lemma 1: F(w) is β-Lipschitz smoothness.
Assumption 2 (Bounded Local Dissimilarity):2 For any par-

ticipating node i, the dissimilarity between local objective
and global objective at w is bounded by A and B, i.e.,
A‖∇F (w)‖ ≤ ‖∇Fi (w)‖ ≤ B‖∇F (w)‖.

Here ∇F (w) is the gradient of the global objective that is
defined as ∇F (w) =

∑|S|
i=1(Di/

∑|S|
i ′=1Di ′)∇Fi (w) in FL

context. The local dissimilarity in assumption 2 can be seen
as a metric that reveals the data heterogeneity when the same
training configuration (e.g., learning rate, batch size, training
epoch, etc.) across participating nodes is held. As a sanity
check, when all the local data samples are the same, we have
A = B = 1.

Theorem 1: With loss function Fi (w) satisfying
Assumptions 1-2 and supposing w(t) is not a stationary
solution, the expected decrease in the global loss function
between two consecutive rounds satisfies,

F (w(t + 1)) ≤ F (w(t))

− ηEi |t
[( 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ −

Bβη

2

)

·A
2

B
‖∇F (w(t))‖2

]
, (5)

where the expectation Ei |t refers to the weighting strategy of
the participating node i ∈ St for global model aggregation.
〈·〉 is the inner product operation and ‖·‖ denotes the �2 norm
of a vector.

The proof of Theorem 1 is presented in Appendix-A.
Theorem 1 provides a bound on how rapid the decrease of
the global FL loss can be expected. Based on Theorem 1, we
have the following corollary and remarks.

Corollary 1: The convergence upper bound of FL after T
global rounds is given by,

F (w(T )) ≤ F (w(0))

− η

T−1∑

t=0

Ei |t
[( 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ −

Bβη

2

)

·A
2

B
‖∇F (w(t))‖2

]
. (6)

Remark 1: The decrease of FL loss between two consecu-
tive global rounds shows a dependency on learning rate η,
the bounded local dissimilarity of participating nodes, the
correlation between the local gradient and the global gradi-
ent 〈∇F (w(t)),∇Fi (w(t))〉

‖∇F (w(t))‖‖∇Fi (w(t))‖ , and the weight strategy Ei |t that
weighs participating nodes for the global model aggregation
in each global round.

2Similar assumption has made in FL context, for example in [13], [14], [17].
In [13], [17], the dissimilarity across local gradients is imposed by an upper
bound to capture the impact of data heterogeneity on FL convergence, and an
analogous definition named gradient divergence is also presented in [14]. By
tracking the divergence of gradients on each participating node, we observe
that the dissimilarity can be further bounded by a lower bound as shown in
Assumption 2.
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Remark 2: The local gradient, which is correlated with
minimizing the local objective, may not align with the direc-
tion of approaching the optimal of the global objective. The
correlation 〈∇F (w(t)),∇Fi (w(t))〉

‖∇F (w(t))‖‖∇Fi (w(t))‖ between the local gradient
and the global gradient is a metric to measure their alignment
level. From Theorem 1, we can see this metric also indicates
how much each node contributes to reducing FL loss in each
round.

Remark 3: The FL loss F(w(t + 1)) is negatively associ-
ated with the bound gap in Assumption 2, meaning that as
bound gap [A, B] grows larger, the bound weakens, and the
convergence exacerbates. Intuitively, the root cause of dissim-
ilarity is the divergence of local gradients across participating
nodes with heterogeneous datasets, which can be intentionally
regularized by a properly designed weighting strategy.

An immediate suggestion from Theorem 1 is that to improve
the convergence of FL, one can reduce the FL loss by
increasing Ei |t [·] in each global round. This motivates us to
measure node contribution quantitatively through the corre-
lation 〈∇F (w(t)),∇Fi (w(t))〉

‖∇F (w(t))‖‖∇Fi (w(t))‖ between the local gradient and
the global gradient and assign larger weights to the nodes with
higher contribution to enlarge the expected decrease of FL loss
in each global round.

B. Measurement of Node Contribution

In FL, the direction of minimizing local objective Fi (w)
might not align with the direction of minimizing F(w). In
particular, it can be deduced from (3) that the gradient on
different nodes may be tremendously diverse, especially for
participating nodes with heterogeneous datasets. As such, the
contribution from participating nodes for global aggregation
is different. Empirically, we note that if the data distribution
on a node is highly skewed, the gradient may highly deviate
from or even in the opposite direction to the global gradient,
causing a negative effect on the global aggregation.

Instead of assigning weight for participating nodes based
on the size of datasets as in FedAvg [8], we measure the
contribution of participating nodes based on the correlation
between local gradient and global gradient. Particularly, we
quantify the contribution of each node at each global round
based on angle θi (t), that is defined as:

θi (t) = arccos
〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ . (7)

From (7), we can see that when the angle θi (t) is small,
it means the local gradient ∇Fi (w(t)) has a similar direction
to the global gradient, thereby positively contributing to the
global aggregation. In contrast, when θi (t) is large, e.g., larger
than π/2, the local gradient ∇Fi (w(t)) has an opposite direc-
tion to the global gradient, thereby negatively contributing to
the global aggregation.

To restrain the instability caused by randomness presented
in instantaneous angle θi (t) at each round, we use so-called
smoothed angle θ̃i (t) as a substitution, which is the averaged
angle over previous training rounds and is defined as:

θ̃i (t) =

{
θi (t) t = 1
t−1
t θ̃i (t − 1) + 1

t θi (t) t > 1.
(8)

Fig. 2. The smoothed angle ˜θi of participating node at different train-
ing round, where star and pentagon sign denote the angle at communication
round 1 and communication round 15, respectively. Nodes with different data
distribution are marked with different colors.

By using smoothed angle θ̃i (t), the angle difference across
nodes uniquely depends on the data distribution. Intuitively,
the angle θ̃i (t) will be larger as the dissimilarity between data
distribution on node i and population distribution grows. Also,
the smoothed angle is capable of quantifying the degree of data
dissimilarity among the local nodes.

We conduct an experiment to illustrate how data distribution
can be reflected by angle. Under the same training model in
Section III-B, we randomly assign i) 3 nodes with 1-class non-
IID setting (i.e., node “A”, “B”, “C”), ii) 2 nodes with 2-class
non-IID setting (i.e., nodes “D” and “E”), and iii) the rest of
5 nodes with IID setting.

As shown in Fig. 2, the smoothed angle between the local
gradient and the global gradient is full of randomness at the
beginning of FL training. Along with the training, smoothed
angle θ̃i shows diversity across the participating nodes due to
the impact of data heterogeneity on local training. To be more
specific, for those nodes with 1-class non-IID setting, the data
samples from which are highly skewed since the label space Y
is extremely limited. Due to the limited richness of data sam-
ples on node i, the direction for minimizing its local objective
Fi (w), which is reflected by ∇Fi (w), will be far away from
the direction for minimizing the overall objective F (w), which
is reflected by ∇F (w) =

∑|S|
i=1(Di/

∑|S|
i ′=1Di ′)∇Fi (w),

resulting a greater θi as defined by (7). As shown in Fig. 2,
the gradient from the node with extremely skewed data (e.g.,
node “A”, “B”, “C”) is nearly orthogonal with the global gra-
dient after 15 communication rounds, which barely brings a
contribution to the global model. If we ignore the discrepancy
of node contribution and average local update according to the
size of datasets, as in FedAvg, it slows model convergence.

C. Federated Adaptive Weighting (FedAdp)

Provided the diverse node contribution from partici-
pating nodes, the weighting strategy affects Theorem 1
through the expectation Ei |t [

〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ ] con-

sequently. To accelerate the convergence rate, we seek
to lower the upper bound of the expected loss in each
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communication round, which reveals to assign different
weights ψ̃i to different nodes for the global model
aggregation. As such, the corresponding objective is for-
mally stated as enlarging Ei |t [

〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ ] =

∑|St |
i

〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ · ψ̃i (t) via designing ψ̃i under

the inherent constrain
∑|St |

i ψ̃i (t) = 1, ψ̃i (t) ≥ 0 ∀i , t .
Considering the node contribution is measured by (7), a

natural weighting design aiming to enlarge the expectation
should follow the criterion that nodes with higher contribution
deserve higher weights for aggregation in each global round.
We characterize the contribution-regulated weighting strategy
for the global aggregation in each global round adaptively as
Federated Adaptive Weighting (FedAdp).

Assigning adaptive weight for updating the global model in
the proposed FedAdp algorithm includes two steps:

1) Non-Linear Mapping Function: We design a non-linear
mapping function to first quantify the contribution of each
node based on angle information. Inspired by the sigmoid
function, we use a variant of Gompertz function [21], which
is a non-linear decreasing function defined as

f
(
θ̃i (t)

)
= α

(
1− e−e−α(˜θi (t)−1)

)
, (9)

where θ̃i (t) is the smoothed angle in radian, e denotes the
exponential constant and α is a constant as explained in the
following.

The designed mapping function has several properties that
are important for the subsequent weight calculation:

• lim
˜θi (t)→π/2

f (θ̃i (t)) = ε, where ε ∝ 1
α is constant;

• lim
0→˜θi (t)→υ

f (θ̃i (t)) = α, where υ ∝ α is a constant;

α controls the decreasing rate of f (θ̃i (t)) from α to ε as
θ̃i (t) increases from υ to π/2. For example, a small α ∈ Z

+

indicates a lower decreasing rate of f (θ̃i (t)) that decreases
from α to ε ∝ 1

α as θ̃i (t) increases from υ ∝ α to π/2.
As α increases, the gap between small angle and large angle
is amplified (e.g., f (θ̃i (t)) changes within a relatively large
range [α, ε] as θ̃i (t) increases within range [α, π/2]), so is the
difference of contribution from those nodes. However, keeping
increasing α is not consistently effective to distinguish the
difference of contributions from nodes. Since υ is proportional
to α, a large α narrows the boundary [υ, π2 ] where the node
contribution should be considered, making the contribution of
nodes whose angle lays between [0, υ] indistinguishable. The
choice of α is empirically verified in Section V-B.

2) Weighting: After getting the contribution mapped using
the smoothed angle from each node, we use Softmax function
to finally calculate the weight of participating nodes for global
model aggregation as follows:

ψ̃i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ef (
˜θi (t))

∑|St |
i′=1

e
f (˜θi′ (t))

Dm = Dn , ∀m,n ∈ St
Die

f (˜θi (t))

∑|St |
i′=1

Di′e
f (˜θi′ (t))

Dm �= Dn , ∃m,n ∈ St .
(10)

From the first line of (10), if all the participating nodes
have the same size of data samples, the proposed FedAdp
algorithm will assign weight solely based on their contribution

Algorithm 1 Federated Adaptive Weighting (FedAdp)
procedure FEDERATED OPTIMIZATION

Input: node set S,E ,B ,T , η,
1: Server initializes global model w(0), global update Δ(0),

smoothed angle θ̃i (0), i ∈ S
2: for t = 1, . . . ,T − 1 do
3: for node i ∈ St in parallel do
4: Δi (t)← LOCAL UPDATE (i ,wi (t − 1))
5: w(t)← GLOBAL UPDATE

(Δ1(t) Δ2(t), · · · ,Δ|St |(t))
procedure LOCAL UPDATE

Input: node index i , model wi (t − 1)
6: Calculate local updates for τ = Di

E
B̄

times of SGD with
step-size η on Fi (w) and obtain wi (t) using (3)

7: Calculate the model difference Δi (t) = wi (t)−w(t − 1)
8: return Δi (t)

procedure GLOBAL UPDATE

Input: local update Δ1(t),Δ2(t), · · · ,Δ|St |(t)
9: Calculate the global gradient
∇F (w(t)) =

∑|St |
i=1(Di/

∑|St |
i ′=1Di ′)∇Fi (w(t)), where

∇Fi (w(t)) = −Δi (t)/η
10: Calculate instantaneous angle θi (t) by (7)
11: Update smoothed angle θ̃i (t) by (8)
12: Calculate weight for model aggregation by (9), (10)
13: Update global model Ei ,t

[
ψ̃i (t)wi (t − 1)

]

14: return w(t)

quantified by ef (
˜θi (t)). From the 2nd line of (10), FedAdp

will assign weight based on both the contribution and the data
size.

Remark 4: Different from FedAvg, where the weight for
aggregation is solely proportional to the size of local datasets
(e.g., ψi = Di/

∑|St |
i ′=1Di ′), FedAdp takes both the data size

and the node contribution into consideration when assigning
weights for model aggregation.

The reason for adopting the Softmax function is twofold:
i) The output of the Softmax function is a normalized
value with a larger angle corresponding to a smaller
weight. ii) Using the Softmax function, each node’s con-
tribution can be reinforced or suppressed, depending on
the smoothed angle between its gradient and the global
gradient.

The complete procedures of the proposed FedAdp algo-
rithm are presented in Algorithm 1 and FedAdp with adaptive
weighting strategy leads to the following theorem.

Theorem 2: FedAdp with weight design ψ̃i achieves a
tighter bound on FL loss decrease in Theorem 1 than FedAvg
with weight ψi .

The proof of Theorem 2 is presented in Appendix-B.
Compared to FedAvg, FedAdp adopts a simple yet effec-

tive strategy that measures the node contribution by quantify-
ing the correlation between the local gradient and the global
gradient. Weight for the global model updates can be adap-
tively assigned based on node contribution rather than evenly
averaging, which results in greater FL loss reduction in each
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Fig. 3. Test accuracy over communication rounds of FedAdp and FedAvg with heterogeneous data distribution over participating nodes using MLR model.
Upper and lower subplots correspond to training performance on MNIST and FashionMNIST datasets, respectively.

global round and accelerates model convergence consequently,
as confirmed by our experimental results.

V. EVALUATION AND ANALYSIS

To evaluate the performance of our proposed adaptive
weighting algorithm, we implemented FedAdp with PyTorch
framework and PySyft library, and studied the image classifi-
cation task. We evaluated FedAdp by training typical convex
and non-convex learning models on two datasets: MNIST and
FashionMNIST. Similar to the experiment in Section III-B,
when the different degree of skewness of non-IID dataset
is presented, we first investigated how FedAdp outperforms
FedAvg [8] by assigning adaptive weight for model aggrega-
tion. Note that our proposed algorithm is not limited by the
presence of the IID dataset and can be applied to a general
scenario with data heterogeneity as verified in Section IV-A.
Then, the choice of α for non-linear mapping in FedAdp is
discussed in Section IV-B. Finally, by tracking the divergence
of gradients on participating nodes, we showed FedAdp alle-
viates the impact brought by the data heterogeneity, compared
to FedAvg, which is beneficial to reducing the FL loss in each
round and accelerating FL model convergence as discussed in
Section IV-C. We briefly describe our experiment settings as
follows.

We consider Multinomial Logistic Regression3 (MLR)
model and CNN model4 to represent convex and non-convex
learning objective, respectively. we use the number of com-
munication rounds for the FL model to reach a target testing
accuracy as a performance metric. Unless otherwise specified,
the target accuracy is set to 95% for training on MNIST, and
80% for training on FashionMNIST. The number of participat-
ing nodes |St | = 10, Di = 600, B̄ = 50 for MLR and B̄ = 32

3For MLR model, the input is a flattened 784-dimensiona (28 × 28) image,
and the output is a class label between 0 and 9. Note that MLR model can
be extended to strongly-convex setting by adding regularlization term [22].

4The CNN has 7 layers with the following structure: 5 × 5 × 32
Convolutional → 2 × 2 MaxPool → 5 × 5 × 64 Convolutional → 2 × 2
MaxPool → 1024 × 512 Fully connected → 512 × 10 Fully connected →
Softmax (1,663,370 total parameters). All Convolutional and Fully connected
layers are mapped by ReLu activation. The configuration is similar to [8].

for CNN, E = 1, T = 300, η = 0.01, decay rate = 0.995, the
constant in non-linear mapping function α = 5. The skewness
of the dataset is measured by x-class non-IID. The dataset for
nodes is generated in the same way as in Section III-B.

A. Data Heterogeneity

We investigate the different number of non-IID nodes with
different skewness levels of non-IID data to testify the effi-
ciency of FedAdp. For non-IID data, two skewness cases that
x = 1, 2 are considered. We plot the test accuracy vs. the com-
munication rounds of federated learning in Fig. 3 and Fig. 4
when MLR and CNN models are adopted, respectively.

1) MLR Model: Given the learning capability of MLR is
limited, instead of setting a target accuracy, we simply train
a model over 50 global rounds. We plot the test accuracy vs.
the communication rounds of federated learning algorithms in
Fig. 3. From Fig. 3, we can tell FedAdp always outperforms
FedAvg when the nodes with non-IID dataset are present.
In addition, FedAdp converges very fast in the early train-
ing stage, and the superiority of FedAdp is more prominent
when the proportion of nodes with non-IID datasets is larger.
It is noted that the gap between FedAdp and FedAvg over
50 global rounds is not conspicuous because of the simplic-
ity of the MLR model. Different weighting strategies will not
make much difference when the model is reaching its learning
capability. In contrast, the weighting strategy will consistently
impact the FL training process when a more complex neu-
ral network model is applied, as shown in the following
experiment.

2) CNN Model: We plot the test accuracy vs. the commu-
nication rounds of federated learning in Fig. 4. From Fig. 4,
we can tell FedAdp always outperforms FedAvg when the
nodes with non-IID dataset are present. In particular, FedAdp
converges very fast in the early training stage since the gra-
dient divergence is more obvious in the initial rounds, which
makes the effect of assigning adaptive weight for updating the
global model even more significant.

To measure the effectiveness of FedAdp, we count the
number of communication rounds needed to reach a target
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Fig. 4. Test accuracy over communication rounds of FedAdp and FedAvg with heterogeneous data distribution over participating nodes using CNN model.
Upper and lower subplots correspond to training performance on MNIST and FashionMNIST datasets, respectively.

TABLE I
NUMBER OF COMMUNICATION ROUNDS TO REACH A TARGET ACCURACY

FOR FEDADP , VERSUS FEDAVG [8], WITHIN 300 ROUNDS. N/A REFERS

THAT ALGORITHMS CAN NOT REACH TARGET ACCURACY BEFORE

TERMINATION WHERE THE HIGHEST TEST ACCURACY IS SHOWN

accuracy when FedAdp is adopted. Each entry in Table I
shows the number of communication rounds necessary to
achieve a test accuracy of 95% for CNN on MNIST and
80% for FashionMNIST. The bold number indicates the bet-
ter result achieved by FedAdp, as compared to FedAvg.
FedAdp decreases the number of communication rounds
by up to 54.1% and 43.2% for the MNIST task when
non-IID nodes are at 1-class and 2-class non-IID setting,
respectively. For the FashionMNIST task, the correspond-
ing decreases are up to 43.7% and 45.4%, respectively. In
the cases when the target accuracy is not reachable before
300 rounds, FedAdp always terminates with higher testing
accuracy.

Previously, two extremely skewness cases that x = 1, 2 are
considered, while the superiority of the proposed weighting
strategy is not limited to extreme cases. To verify the proposed
weighting strategy in a more general data heterogeneity case,
we consider the CNN model for the MNIST dataset in the
following two cases.

Fig. 5. FL training performance over communication rounds when FedAdp
is adopted considering general heterogeneous data distribution over partici-
pating nodes. The top row and bottom row represent the test accuracy and
training loss over the communication round, respectively.

• Case 1: The number of classes of data samples owned by
node i, denoted by xi , is randomly selected from the set
{1, 2, . . . , 10} without overlapping. Whereafter, the data
samples on each node are randomly selected from the
xi -subset of the training dataset.

• Case 2: For half of the nodes, their xi (i.e., the number of
classes of data samples) is selected following the uniform
distribution U(1, 5), whereas for the other half, xi follows
the uniform distribution U(6, 10). The data samples on
each node are randomly selected from the xi -subset of
the training dataset.

From Fig. 5, we can see FedAdp outperforms FedAvg
in both cases. In both cases, the convergence performance is
worse than the result in Fig. 4 because the number of IID nodes
is small and the local dissimilarity is greater in these two cases.
However, it is clear by measuring node contribution, FedAdp
is more rapid in reducing FL loss in each global round thus
accelerating model convergence, even without the participation
of IID nodes.
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Fig. 6. Effect of setting α on federated learning performance. Data
heterogeneity setting is 5 IID + 5 non-IID (1) and CNN model is adopted.

B. Choosing α

One natural question is how to determine α for non-
linear function. A large α may increase the convergence by
emphasizing the difference of contribution from participating
nodes, which hastens model convergence in the initial train-
ing stage. Meanwhile, since υ is proportional to α, a large α
also narrows the boundary [υ, π2 ] where the node contribution
should be considered, making the contribution of nodes whose
angle lays between [0, υ] indistinguishable.

We heuristically choose α ∈ Z
+ in the ascending order.

From Fig. 6, increasing α leads to faster convergence since
the gap between small angle and large angle is amplified, so
is the difference of contribution from those nodes. However,
a larger α is not always effective, especially after the initial
training stage. Empirically, the best α is 5 for our experimental
setting.

C. Divergence Measurement

Finally, in Fig. 7, we take one experimental case as an
example to demonstrate the divergence of local gradients,
which captures the overall data heterogeneity of participat-
ing nodes. In particular, we track the divergence of gra-
dients over all participating nodes, which is measured by∑St

i
1

|St |‖∇F (w) − ∇Fi (w)‖. Empirically, we observe that
our proposed weighting strategy leads to smaller divergence
among participating nodes, and the smaller the divergence, the
smaller the FL loss. As w(t) is not a stationary solution along
with the training, aggregation by FedAdp is seen as a reg-
ularization process that restrains the local weight wi (t + 1)
trained by skewed datasets from being deviatory, which low-
ers the model divergence and consequently accelerates the
convergence.

VI. CONCLUSION

In this paper, we have presented our design of FedAdp
algorithm that assigns nodes with different weights for updat-
ing the global model in each round adaptively to reduce
the communication rounds of FL training in the presence of
non-IID data. We argue that non-IID data exacerbates the
model divergence and observe the nodes with non-IID data

Fig. 7. The connection between the model test loss and the divergence across
local gradients. The proposed weighting strategy FedAdp gives an impact on
alleviating the divergence brought by nodes with skewed datasets. (1) Top
row: the training loss on the MNIST dataset under one data heterogeneity
setting (5 IID + 5 non-IID (1)). (2) Bottom row: the corresponding divergence
measurement.

make a smaller (or even negative) contribution to the global
model aggregation than the nodes with IID data. We have
proposed to measure the node contribution based on the angle
between local gradient and global gradient and designed a
non-linear mapping function to quantify node contribution.
We have designed an adaptive weighting strategy that assigns
weight proportional to node contribution instead of according
to the size of local datasets. The simple yet effective strategy
is able to reinforce positive (suppress negative) node contri-
bution dynamically, leading to a significant communication
round reduction. Its performance superiority over FedAvg
is verified both theoretically and experimentally. We have
shown that FL training with FedAdp has reduced the com-
munication rounds by up to 54.1% on the MNIST dataset
and up to 45.4% on the FashionMNIST dataset compared to
FedAvg.

APPENDIX A
PROOF OF THEOREM 1

From the β-Lipschitz smoothness of F(w) in Lemma 1 and
Taylor expansion, we have

F (w(t + 1)) ≤ F (w(t)) + 〈∇F (w(t)),w(t + 1)− w(t)〉
+
β

2
‖w(t + 1)− w(t)‖2. (A1)

The last two terms on the right hand side of the above
inequality are bounded respectively as:
• Bounding ‖w(t + 1) − w(t)‖2: By the definition of the

global aggregation for w(t + 1), we have

‖w(t + 1)− w(t)‖ = Ei |t [‖wi (t + 1)− w(t)‖]. (A2)

By following SGD optimization, for each term within the
expectation in the right hand side of A2, we have

wi (t + 1) = w(t)− η∇Fi (w(t)). (A3)
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Therefore,

‖w(t + 1)− w(t)‖2 =
(
Ei |t [‖wi (t + 1)− w(t)‖]

)2

= η2
(
Ei |t [‖∇Fi (w(t))‖]

)2

1≤ η2Ei |t
[
‖∇Fi (w(t))‖2

]
, (A4)

where inequality 1 holds by Cauchy-Schwarz inequality.
• Bounding 〈∇F (w(t)),w(t + 1) − w(t)〉: Again, by the

definition of the global aggregation for w(t + 1) and A3 we
have

〈∇F (w(t)),w(t + 1)− w(t)〉
= −ηEi |t [〈∇F (w(t)),∇Fi (w(t))〉]. (A5)

The expectation term in A5 can be further rewritten as

Ei |t [〈∇F (w(t)),∇Fi (w(t))〉]

= Ei |t
[ 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖
·‖∇F (w(t))‖‖∇Fi (w(t))‖

]

2≥ Ei |t

[
〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ ·

‖Fi (w(t))‖2
B

]
,

(A6)

where inequality 2 comes from Assumptions 2 that local
dissimilarity is upper bounded by B .

Plugging A6 into A5, then the last two terms on the right
hand side of A1 are expressed as

〈∇F (w(t)),w(t + 1)− w(t)〉+ β

2
‖w(t + 1)− w(t)‖2

≤ −ηEi |t

[
〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ ·

‖Fi (w(t))‖2
B

]

+
βη2

2
Ei |t

[
‖∇Fi (w(t))‖2

]

3≤ −ηEi |t
[( 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ −

Bβη

2

)

·A
2

B
‖∇F (w(t))‖2

]
, (A7)

where inequality 3 holds because of Assumptions 2 that local
dissimilarity is lower bounded by A.

Finally, Theorem 1 is proved by substituting A7 into A1.

APPENDIX B
PROOF OF THEOREM 2

We consider the general case that participating nodes have
a different number of data samples. For node i with data size
Di , we create Di virtual nodes, each with a unit sample size.
Hereinafter, we use index (i , j ), j ∈ {1, . . . ,Di} to denote the
j-th virtual node split from the participating node i , i ∈ St ,
where the gradient information is kept on virtual nodes as on
the participating node (e.g., ∇Fi ,j (w(t) = ∇Fi (w(t)), θi ,j =
θi ). As such, all virtual nodes split by node i share the same
weight (i.e., ψ̃i ,j (t) = ψ̃i ,k (t), ∀j , k ∈ {1, . . . ,Di}), where

ψ̃i ,j (t) denotes the weight for virtual node (i , j ). The weight
of node i is ψ̃i (t) =

∑Di
j=1 ψ̃i ,j (t) = Di ψ̃i ,j (t).

From (7), θi ,j = θi monotonically decreases with
〈∇F (w(t)),∇Fi (w(t))〉

‖∇F (w(t))‖‖∇Fi (w(t))‖ . From (9), f (·) is a decreasing function

of θ. Thus, by that ψ̃i ,j (t) = ef (
˜θi,j (t))

∑|St |
i′=1

Di′e
f (˜θi′ (t))

, we can see

ψ̃i ,j (t) monotonically increases with 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ .

Therefore, generic ψ̃i ,j (t) satisfies the following criterion

ψ̃i ,j (t) ∝
〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖

ψ̃i ,j (t) ≥ 0 ∀i , j , t
|St |∑

i=1

Di∑

j=1

ψ̃i ,j (t) =

|St |∑

i=1

ψ̃i (t) = 1, (B1)

with the corresponding bound of the expected loss being

F (w(t + 1)) ≤ F (w(t))

− η

|St |∑

i

( 〈∇F (w(t)),∇Fi (w(t))〉
‖∇F (w(t))‖‖∇Fi (w(t))‖ ψ̃i (t)−

Bβη

2

)

·A
2

B
‖∇F (w)‖2. (B2)

where ψ̃i (t) is defined as in (10).
In order to compare the expected loss achieved by FedAdp

and FedAvg, one can simply measure the expectation term
in (5). We use ui ,j to denote the contribution from virtual node
j of participating node i for model aggregation. In each global
round, we sort the contribution from all the virtual nodes that is
measured by the correlation 〈∇F (w(t)),∇Fi (w(t))〉

‖∇F (w(t))‖‖∇Fi (w(t))‖ between
the local gradient and the global gradient in descending order,
that is u1,1 = u1,2 = · · · = u1,D1

≥ u2,1 = u2,2 =
· · · = u2,D2

≥ · · · ≥ u|St |,1 = u|St |,2 = · · · = u|St |,D|St |
.

Apparently, the weight assigned to virtual node in FedAdp
should follow the same order ψ̃1,1 = ψ̃1,2 = · · · = ψ̃1,D1

≥
ψ̃2,1 = ψ̃2,2 = · · · = ψ̃2,D2

≥ · · · ≥ ψ̃|St |,1 = ψ̃|St |,2 =

· · · = ψ̃|St |,D|St |
, with

∑
i

∑
j ψ̃i ,j = 1. As such, by

Chebyshev’s inequality [23], we have the following hold for
any um,j , un,j ′ ,

ψ̄
(
um,j − un,j ′

)
(
ψ̃m,j

ψ̄m,j
− ψ̃n,j ′

ψ̄n,j ′

)
≥ 0

ψ̄
[
um,j ψ̃m,j ψ̄n,j ′ + un,j ′ ψ̃n,j ′ ψ̄m,j

]

≥ ψ̄
[
um,j ψ̃n,j ′ ψ̄m,j + un,j ′ ψ̃m,j ψ̄n,j ′

]
, (B3)

where ψ̄ = ψ̄m,j = ψ̄n,j ′ =
1
D denotes the weight of FedAvg

for all virtual nodes with D =
∑|St |

i Di .
Adding all the D2 inequalities, we have

ψ̄

⎡

⎣
|St |∑

m=1

Dm∑

j=1

|St |∑

n=1

Dn∑

j ′=1

um,j ψ̃m,j ψ̄n,j ′ + un,j ′ ψ̃n,j ′ ψ̄m,j

⎤

⎦

≥ ψ̄
⎡

⎣
|St |∑

m=1

Dm∑

j=1

|St |∑

n=1

Dn∑

j ′=1

um,j ψ̃n,j ′ ψ̄m,j + un,j ′ ψ̃m,j ψ̄n,j ′

⎤

⎦
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|St |∑

m=1

Dm∑

j=1

um,j ψ̃m,j

|St |∑

n=1

Dn∑

j ′=1

ψ̄n,j ′

︸ ︷︷ ︸
=1

+

|St |∑

n=1

Dn∑

j ′=1

un,j ′ ψ̃n,j ′

×
|St |∑

m=1

Dm∑

j=1

ψ̄m,j

︸ ︷︷ ︸
=1

≥
|St |∑

m=1

Dm∑

j=1

um,j ψ̄m,j

|St |∑

n=1

Dn∑

j ′=1

ψ̃n,j ′

︸ ︷︷ ︸
=1

+

|St |∑

n=1

Dn∑

j ′=1

un,j ′ ψ̄n,j ′

×
|St |∑

m=1

Dm∑

j=1

ψ̃m,j

︸ ︷︷ ︸
=1

2 ·
|St |∑

m=1

Dm∑

j=1

um,j ψ̃m,j ≥ 2 ·
|St |∑

m=1

Dm∑

j=1

um,j ψ̄m,j

∑

m

um ψ̃m

︸ ︷︷ ︸
FedAdp

4≥
∑

m

umψm

︸ ︷︷ ︸
FedAvg

. (B4)

where um = um,1 = · · · = um,Dm
. Inequality 4 holds

because ψ̃m = ψ̃m,j · Dm and ψm = ψ̄m,j · Dm with
ψ̃m and ψm denoting the weight for model aggregation in
FedAdp and FedAvg, respectively. The equality 4 holds
when ui = uj , ∀i , j ∈ St .

Due to the greater expectation term in (5). FedAdp results
in greater decrease of FL loss in each global round, as
compared to FedAvg. This completes the proof.
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