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Abstract

Building reliable machine learning models depends on access to data samples. With

the increasingly advanced sensing and computing capabilities on edge devices, the ever-

stringent data privacy legislation, and growing user privacy concerns, it is crucial to build

learning models from separate, heterogeneous data sources without violating user privacy.

Federated Learning (FL) can facilitate collaborative machine learning without accessing user-

sensitive data and has emerged as an attractive paradigm for mobile edge networks. However,

federated optimization builds on a heterogeneous environment, which brings challenges

beyond traditional distributed learning. Though FL is viewed as a promising technique for

enabling intelligent applications, the current FL system suffers from high communication

costs, restricting it from being applied in mobile edge networks. To fully release the potential,

the FL design must be communication-efficient, adaptive, and robust to the heterogeneous

training environment.

In this thesis, we aim to address the practical challenges of FL in a conscientious manner.

Particularly, we try to understand and address some of those challenges in federated networks

and build FL systems that fulfill the accuracy, efficiency, and robustness requirements.

Starting with the primary challenge, i.e., data heterogeneity, we study how it impacts the

model accuracy and communication cost in the collaborative training system. To address

this concern, we develop new and scalable algorithms that can quantify the contribution from

participating devices, thus alleviating the negative impact of data heterogeneity and reducing

the overall communication burden. To handle another major challenge, i.e., the heterogeneity

of computation capabilities among different types of edge devices, we devise a new sub-model

training method to enable devices with heterogeneous computation capabilities to participate

in and contribute to the FL system, making it robust to the straggler effect. The proposed

solutions are rigorously compared with popularly adopted benchmarks from theoretical and

v



empirical perspectives. Finally, we provide a preliminary discussion on personalized FL and

point out the potentially interesting research directions in the related fields. Although the

proposed methods and designs originate from the practical application of FL, the theoretical

insights gained from this thesis can be extended to a broader context of trustworthy machine

learning.
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Chapter 1

Introduction

1.1 Federated Learning

With rapid advancement, edge devices (e.g., sensors, mobile phones, and connected vehicles)

constantly generate an unprecedented amount of data [1]. These devices are equipped with

enhanced sensors, computing, and communication capabilities. Coupled with the rise of Deep

Learning (DL), the edge devices unfold countless opportunities for various tasks of modern

society, e.g., road congestion prediction [2] and perceptive control (e.g., Unmanned Aerial

Vehicles (UAVs) swarm navigation [3].

In the traditional cloud-centric approaches, data generated and collected by edge devices

is uploaded and processed in a data center. It is predicted that the data generation rate

will exceed the capacity of today’s Internet in the near future [4]. Mobile Edge Computing

(MEC) has naturally been proposed to incorporate data processing outside the cloud. With

computing and storage capability, MEC systems formulate an end-edge-server architecture.

Multiple edge servers can perform large-scale distributed tasks involving local processing

and remote execution under the coordination of a remote cloud. MEC approaches balance

training efficiency and communication cost by bringing model training toward where the data

1



Figure 1.1: Schematic model learning comparison: the edge-server based federated learning
system vs. traditional centralized machine learning system. By exploiting the computation
potential of edge devices, federated learning differentiates itself from conventional learning
approaches from data acquisition, storage, and training, making privacy-preserving model
learning and communication efficiency possible.

is generated. However, computation offloading and data processing at the edge server still

involve sensitive data transmission.

In either centralized cloud training or MEC approaches, collecting data for model training is

unrealistic from a privacy, security, regulatory, or necessity perspective. To maintain privacy-

sensitive data and to facilitate collaborative Machine Learning (ML) among distributed

devices, Federated Learning (FL) has emerged as an attractive paradigm, where local devices

collaboratively train a task model under the orchestration of a central server without accessing

end-user data [5, 6]. In FL, local devices cooperatively train an ML model required by the

central server by utilizing their local data. By transferring local model updates to the

central server for model aggregation and acquiring a global model for local training rather

than sending raw data, user data privacy is well protected. FL distinguishes itself from

conventional approaches in data acquisition, storage, and training, has been deployed by

major service providers, and plays a vital role in supporting privacy-sensitive applications,

including computer vision for autonomous vehicles, natural language processing tasks for
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mobile users, and health monitoring with wearable devices [7].

1.2 Challenges of Federated Networks

FL unfolds the commensal opportunity for collaborative training and privacy protection.

Meanwhile, FL also involves several unique characteristics that are listed as follows.

1) Expensive Communication. FL is capable of producing highly accurate statistical

models by consolidating knowledge from diverse data sources. Communication costs in FL

become the bottleneck most of the time. i) Model optimization in the FL context involves

iterative message transmission (e.g., model update in each communication round) instead

of sending entire raw data over the network. For complex DL models, e.g., ResNet, which

is laborious to optimize, each round of model exchange involves millions of parameters

[8]. The high dimensional update results in communication costs. ii) Generally, federated

networks and the learning process compromise a massive number of devices, among which

the communication cost is even prohibited. For example, millions of smartphones on the

task of Next-Word Prediction [9], or modern IoT networks consisting of wearable sensors,

autonomous vehicles, and rode-side units, sensors of smart city with massive connectivity

[10] [11]. To reduce the overall communication cost in FL, two main aspects are focused on:

i) designing faster convergence algorithms to reduce the communication round. ii) reducing

the size of the transmitted parameters at each round.

2) Statistical Heterogeneity. Devices generate and collect data samples with an

underlying independent preference, which may not be associated with amongst devices. For

example, IoT devices capture different ambient information varying from location. Unlike

traditional centralized ML or distributed ML, where the model training can access all data

samples or run on independent and identically distributed (i.i.d) data samples from a large

dataset, this prerequisite is impractical for FL since the local dataset is only accessible by

3



Figure 1.2: Federated networks with heterogeneous edge devices and network identities.
The system, model, and statistical heterogeneity are shown in different dashed boxes from
top to bottom. The FL training can be interrupted by either the communication or the
local computation process, exacerbating the accuracy and communication cost issue. The
overarching goal of this thesis is to develop principled approaches to improve communication
efficiency and system robustness by considering these heterogeneities.

the local device. Therefore, the participating devices may have local datasets that follow

different data distributions, i.e., non-independent and identically distributed (non-i.i.d) data

samples across participating devices, making it difficult for distributed model optimization to

converge.

The canonical FL problem aims to optimize the surrogated objectives of local devices,

where the statistical heterogeneity incurs discrepancy between the overall (global) learning

objective and local objectives, i.e., minimizing the local objective may not positively contribute

to the global objective minimization. The convergence rate of the FL model over non-i.i.d.

4



data is slow compared with the case of i.i.d. data. Data heterogeneity stagnates model

convergence, reduces the model accuracy substantially, and invokes additional communication

rounds to resource-constrained edge devices [12, 13].

3) System Heterogeneity. Due to the system-related constraints and network size, FL

results in a small portion of devices being active in each global round, randomly selected from

a massive number of candidate devices [5]. However, the candidate devices are heterogeneous

regarding network connectivity (4G, 5G, wifi), variability in hardware (CPU, memory, energy),

channel condition, and even the willingness to participate. It is not surprising that active

devices drop out in the optimization process due to the energy level or connectivity. The

straggler effect exacerbates the learning stagnation and delays the convergence. Overall, such

system-level heterogeneity aggravates the challenge of robust FL system design for straggler

mitigation and fault tolerance.

1.3 Motivation and Research Contribution

Initially brought by Google in 2016, privacy-preserved federated learning has emerged as a

promising technology to embrace machine learning in many applications. However, the vanilla

federated averaging (FedAvg) [5] algorithm is affected by many factors in real deployments,

including slow convergence in statistical heterogeneity scenarios, straggler effect due to system

heterogeneity, and a natural trade-off between model generalization and personalization,

etc. To be practically useful, a federated learning approach needs to deliver an accurate

model with efficiency in training and robustness to statistical and system heterogeneity. This

thesis aims to understand and address some of these challenges in federated

networks and build FL systems that fulfill the accuracy, efficiency, and robustness

requirements.

The main research contribution is covered in chapters 3 - 5. Although the proposed
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methods and designs originate from practical applications of FL, the theoretical insights

gained from this thesis can be extended to many more scenarios.

Chapter 3: Quantifying the Device Contribution in Global Aggregation. FedAvg

is the de facto optimization method due to its simplicity. However, it behaves inefficiently

in non-i.i.d. scenarios. We propose Federated Adaptive Weighting (FedAdp) [14] algorithm

that aims to improve the FL learning performance through assigning distinct weights for

participating devices in global model aggregation. We observe that devices with heterogeneous

datasets contribute differently. Therefore, our main intuition is to measure the contribution

of the participating device based on the gradient information, then assign different weights

accordingly and adaptively at each communication round for global model aggregation. With

theoretical analysis, we show how weighting impacts the expected training loss decrement of

the learning objective, where the weighting strategy can be tuned accordingly. We empirically

evaluate the learning performance of FedAdp and compare it with commonly adopted FedAvg

via extensive experiments. While the algorithmic modification is minor and in a simple

full-participation setting, FedAdp untangles the direction to speed up FL training in non-i.i.d.

scenarios by quantifying device contribution.

Chapter 4: Improving the FL Convergence by Probabilistic Device Selection.

Random device selection [5] is effective in general i.i.d. settings but poses learning difficulty in

non-i.i.d. datasets due to the misalignment between the global objective and local objectives.

A careful device selection strategy is necessary to reveal the FL scenario where large-scale

devices with non-i.i.d. datasets are potentially involved. We propose a Probabilistic Device

Selection framework, FedPNS [15], with contribution-related criteria to choose active devices in

each global round. To align local model updates with minimizing the global objective, we use

Optimal Aggregation to determine the optimal subset of local updates of the participating

devices in global model aggregation, From which the data heterogeneity can be profiled. The

result of Optimal Aggregation is further used to adjust the probability for each device to

6



be selected in the subsequent global rounds. FedPNS involves minor calculations on the server

side, does not impose additional communication costs, and is easy to implement in a scalable

fashion.

Chapter 5: Handling the Computation Heterogeneity by Partial Model Training.

The implicit assumption that all devices are capable of doing model training and exchanging

model information is unrealistic in building robust FL systems. To accommodate different

types of devices with heterogeneous computational capabilities, model-heterogeneous FL

is proposed in this chapter, where participants are allowed to train models with different

complexity (i.e., the subset of a learning model). We propose a novel layer-wise model-

splitting method to match the device’s capability so that the involved devices can contribute

to the global model and avoid the straggler effect. We answer the question that given limited

computation and/or communication, which part of the whole model should be updated and/or

protected in FL? Theoretically, we find the proposed partial model training strategy enjoys a

similar convergence rate to FedAvg in strongly-convex and smoothness case. However, by

allowing adaptive partial model allocation, all participating devices can contribute to the

global model punctually, making the task completion time shorter and the FL system robust

to straggler effects and training disruption.

1.4 Outlines of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents preliminaries of

federated optimization and a literature review of algorithmic designs on improving the

convergence rate under the above-mentioned challenges. Chapters 3 and 4 present two works

to handle the statistical heterogeneity in FL. Particularly, we propose using an adaptive

weighting strategy in Chapter 3 to aggregate the contribution-different local updates to

improve the global model convergence. In Chapter 4, we propose a probabilistic device
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scheduling design for local training. The proposed design can preferentially select devices

that propel faster model convergence and can be easily extended to a large-scale fashion. To

handle the computation heterogeneity on local devices, a partial model training strategy is

proposed in Chapter 5, which allows participating devices with lower computation capability

to train and contribute to parts of the designated model, thus better utilizing local resources

and avoiding the straggler effect caused by computation heterogeneity. The superiority of

all proposed methods in Chapter 3 - 5 are theoretically analyzed, empirically verified, and

compared with existing benchmarks. Finally, Chapter 6 summarizes the thesis and points

out the social impact and future directions in this research field.
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Chapter 2

Preliminaries and Literature Review

2.1 Preliminaries

2.1.1 Canonical Federated Learning

In general, federated learning methods [5, 19, 20] are designed to handle the consensus learning

task (learning a single, global model) in a decentralized manner, where a central server

coordinates the global learning objective, and multiple devices train the model with locally

collected data. Consider the network with a set of local devices |K| (i.e., k ∈ {1, 2, · · · , |K|}),

the goal in federated optimization is to learn a parametric model w that fits data samples in

a distributed setting by minimizing some loss function F (w). Formally, the FL objective is

to minimize a surrogated function as follows

min
w

F (w) :=
|K|∑
k=1

|Dk|∑|K|
k=1 |Dk|

Fk(w). (2.1)

We assume each local device k ∈ K has a training set Dk that follows a data distribution qk,

i.e., each sample zk,1, zk,2 · · · zk,|Dk| is drawn from qk distribution randomly, where each of which

consists of a pair of feature and response denoted by zk,s = {xk,s, yk,s}. Let ℓ(w; zk,s) : Θ→ R
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be the loss function associated with data sample zk,s, where Θ = Rd is the parameter space.

The population loss function for each device k is defined as Fk(w) := Ezk,s∽qk
[ℓ(w; zk,s)].

Because each device has a small number of data samples, population distribution on the

device is not fully observed. Instead of minimizing the population loss function, each device

targets the Empirical Risk Minimization (ERM) problem defined as

Fk(w) = 1
|Dk|

∑
zk,s∈Dk

ℓ(w; zk,s). (2.2)

Further, for general classification problem with cross-entropy loss, we have local objective

represented as follows

Fk(w) = Ezk,s∽qk

− C∑
j=1

1y=jloglj(w, zk,s)


= 1
|Dk|

∑
zk,s∈Dk

−
(

C∑
c=1

qk(yk,s = c)Exk,s|yk,s=c [loglc(w,xk,s, yk,s)]
)
, (2.3)

where loglc(w,xk,s, yk,s) denotes the probability that the data sample {xk,s, yk,s} is classified

as the c-th class given model w. qk(yk,s = c) denotes the data distribution on device k over

class c ∈ [C].

2.1.2 Federated Averaging with Partial Device Participation

The most commonly used algorithm to solve (2.1) is Federated Averaging (FedAvg) [5],

which enables the partial devices participation in the server side, and applies a Stochastic

Gradient Descent (SGD) optimizer on local function Fk(·) with the same learning rate across

all devices. FedAvg process is viewed as a variant of SGD with multiple global rounds,

where each global round consists of multiple steps of local update (e.g., τ steps) followed

by model synchronization process between participating devices and the server. Denoting
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t = {1, 2, · · · , T} as the index of FL global rounds, one round of FedAvg is described as

follows

1. The server randomly samples a subset of devices S ⊆ K (with a pre-defined fraction c̆

to control the algorithm efficiency, where |S| = c̆|K|) and broadcasts the latest model

wt to the selected devices k ∈ S.

2. Each selected device views wt as an initial model, updates it by τ steps of SGD1 over

its empirical risk objective defined in (2.2), and sends the updated model wt+1
k back to

the server2.

3. The server aggregates received local models wt
k, k ∈ S with weight ak and gets the new

global model wt+1, where ak can be defined by different criteria, e.g., proportional to

data size |Dk|/
∑|S|
k=1 |Dk| in [5].

The above steps are repeated until a satisfying learning result, e.g., the learning accuracy

in classification tasks, is met.

2.1.3 FedAvg for non-IID data

The independent and identically distributed (i.i.d.) sampling condition of training data is

important, which ensures that the stochastic gradient is an unbiased estimate of the full

gradient [21]. FedAvg is shown to be effective even with simple aggregation, given that the

data distribution across different devices is the same as centrally collected data. McMahan

et al. [5] show that tuning the optimization parameter to achieve fast model convergence is

important. Particularly, the number of local epochs E plays a crucial role. On one hand,
1According to the vanilla FedAvg, τ = |Dk|

B E is related to the number of local epochs E and batch size B.
2Typically, there are two ways for devices to upload their local model to the server, either by uploading

model parameters wt
k or by uploading the model difference ∆t+1

k . Although the same amount of data is to be
sent in both ways, conveying ∆t+1

k is proven to be more amenable for compression [6]. We will be using wt+1
k

and ∆t+1
k interchangeable in this thesis.
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devices executing multiple epochs E (so as τ) can greatly improve the convergence speed

and alleviate the communication burden in federated networks, compared to Federated SGD,

where each local device transmits model update after only one step of (full) gradient descent.

However, on the other hand, a large E might slow down the convergence in non-i.i.d. FL

training where heterogeneous local objectives are involved. The data distribution determined

by usage patterns across local devices is typically non-i.i.d., i.e., pk is different across

participating devices. Since local objective Fk(w) is closely related to data distribution

pk, a large number of local updates lead the model towards optima of its local objective

Fk(w) as opposed to the global objective F (w), which might be potentially different. The

inconsistency between local models wk and global model w is accumulated along with local

training, causing training instability that makes the FL model struggle to converge. As such,

local training with multiple local updates potentially hurts convergence and even leads to

divergence with the presence of non-i.i.d. data [5, 12, 20, 22].

We conducted a simple experiment to demonstrate the impact of non-i.i.d. data on model

convergence. We trained a two-layer convolutional neural network (CNN) model with the

same neural network architecture in [5] using Pytorch on the MNIST dataset (containing

60,000 samples with 10 different types of handwriting digits from 0 to 9 and each sample

has 28 × 28 pixel) until the model achieves 95% test accuracy3. 10 devices are selected,

each with 600 samples that are selected based on their label criteria. If a device is at i.i.d.

setting, 600 samples are randomly selected over the whole training set. If a device is at x-class

non-i.i.d. setting, 600 samples are randomly selected over a subset composed of x class data

samples. Each x-class is selected at random and can be overlapped. The skewness of datasets

is measured and reflected by the value of x.

We use the same notations for FedAvg algorithm as [5]: B, the local minibatch size, and
3In this thesis, we following the definition of test accuracy in [5], which is achieved at the server side, and

is defined as the proportion between the number of correctly-classified data samples and the number of total
test samples on the held-out test dataset of the used dataset, e.g., MNIST.

13



0 50 100 150 200 250 300
Communication Round

60

65

70

75

80

85

90

95

100

Te
st
 A
cc
ur
ac

y

1 i.i.d. + 9 non-i.i.d. (1)
5 i.i.d.
5 i.i.d. + 5 non-i.i.d. (1)
3 i.i.d.
3 i.i.d. + 7 non-i.i.d. (1)
3 i.i.d. + 7 non-i.i.d. (2)
10 i.i.d.
10 non-i.i.d. (1)

Figure 2.1: Test accuracy over communication rounds of FedAvg with heterogeneous data
distribution over participating devices. X i.i.d. + Y non-i.i.d. (1) (or (2)) represents X
devices are at i.i.d. setting and Y devices are at 1-class (or 2-class) non-i.i.d. setting.

E, the number of local training epochs. In this experiment, B = 32, E = 1, η = 0.01 and

learning rate decay of 0.995 per communication round. We can conclude from Fig. 2.1

• Model convergence highly depends on i.i.d. devices. The presence of non-i.i.d. devices

imposes variance to model training, which slows the convergence of FL (e.g., 5 i.i.d.

case converges faster than 5 i.i.d. + 5 non-i.i.d. (1) case).

• The skewness of data affects model convergence. With the participation of the non-i.i.d.

device, the model converges much slower when the skewness of the dataset increases

(e.g., 3 i.i.d. + 7 non-i.i.d. (2) case converges much faster than 3 i.i.d. + 7 non-i.i.d.

(1) case).

The statistical heterogeneity is one of the most significant characteristics that differentiate

FL from traditional federated optimization from theoretical and empirical perspectives. In

what follows, we introduce some assumptions generally used in the convergence rate analysis

of FL.

14



2.1.4 Assumptions for Convergence Analysis

In this part, we spell out all the assumptions that are adopted for the convergence analysis of

federated optimization (or distributed machine learning, in a broad perspective) in this thesis.

The listed assumptions mainly focus on local function in FL and the SGD optimization of

local objectives.

Assumption 1. µ-strong convexity. Fk(w), k ∈ S is µ-strong convex, i.e. Fk(w) ≥

Fk(w′) + (w−w′)⊤∇Fk(w′) + µ
2∥w−w′∥2, for all w,w′, where (·)⊤ denotes the transpose

operation of vector.

Assumption 2. L-smoothness. Fk(w), k ∈ S is L-smooth, i.e. Fk(w) ≤ Fk(w′) + (w−

w′)⊤∇Fk(w′) + L
2 ∥w−w′∥2, for all w,w′ (or ∥∇Fk(w)−∇Fk(w′)∥ ≤ L∥w−w′∥ in another

form).

Assumption 3. Bounded local gradient. The expected squared norm of the local stochastic

gradient is bounded, i.e., E∥∇Fk(wt
k, ξk)∥2 ≤ G2

k for all device k ∈ S and t = 1, 2, · · · , T ,

and G2
k ≤ G2,∀k ∈ K.

Please note that assumptions 1 and 2 are made to the local loss function, which can

be satisfied when the logistic regression with cross-entropy loss is adopted. More examples

include ℓ2-norm regularized linear regression with mean square error and the support vector

machine with hinge loss. Based on Assumptions 1 and 2, the definition of F (w), and triangle

inequality, we can easily derive that the global objective F (w) satisfies µ-strong convex and

L-smoothness conditions.

Assumption 3 is made to the result of SGD optimizer and local objective, and a similar

assumption has been made in previous works [20, 22–25]. Besides, with w trained by

heterogeneous data, Gk is different for different devices, which is closely related to the data

distribution on each device. If the data distribution on device k is more similar to the
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population distribution over all devices, Gk is smaller, and vice versa. This observation is

empirically illustrated in Chapter 4.

2.2 Federated Learning for Wireless Network

To build a feasible and satisfying FL model, a number of rounds of communication between

local devices and the server is required. Employing high dimensional models [8] results in

enormous communication costs. Additionally, the heterogeneous device identity, commu-

nication network (4G, 5G, WiFi), and unstable network conditions cause straggler effects,

making communication the bottleneck of the FL network and the obstacle for FL to be

implemented in real scenarios. To improve the communication efficiency in FL, one can

reduce the communication round by improving the convergence speed of model training

(discussed in Section 2.2.1 and 2.2.3) or reducing the actual transmission cost of wireless links

in each round of communication (see Section 2.2.3).

FL tasks typically involve 101 − 106 devices and 102 − 104 global rounds [26], and each of

the global rounds has multiple configurable hyperparameters for both participating devices

(e.g., the number of local updates) and the server (e.g., device scheduling policy). As such, it

is infeasible to seek the entire configuration space for a global optimum systematic design.

In what follows, we separate the existing literature aiming at FL convergence optimization

into two streams, where the main idea applies on either the device side or the server side,

and discuss the representative method separately. It is worth mentioning that many of those

methods are proposed for scenarios with specific features, for example, to handle statistical

and/or system heterogeneity, which will be emphasized in the following discussion.
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2.2.1 Improving the Convergence via Device-level Optimization

We categorize the device-level methods into Tuning Local Update, Local Optimizer,

and Local Objective, as discussed in the following.

Using a simple averaging and local SGD, FedAvg shows effectiveness in consensus learning

with decentralized devices [5]. Particularly, the number of global rounds can be significantly

reduced by allowing flexibility in the number of local updates before synchronization, as

opposed to the conventional approach FedSGD, where synchronization is done after every

single step of local update. Li et al. [19] proposed to allow participating devices to perform

a variable number of local updates rather than applying the same amount of workload for

each device [5] to overcome the system heterogeneity. Similar to [19], authors in [27] also

posed local accuracy for participating devices, based on limited local computation resources,

as an index to steer the number of local updates performed. Authors in [28] proposed using

local accuracy as the criteria to accommodate the different computational capabilities of local

devices. Instead of applying a unified configuration (e.g., local epoch) to all participating

devices, the server will assign different local accuracies to participating devices depending on

computational capability. Once the criteria are satisfied locally, the updated model will be

transmitted to the server to avoid the potential straggler effect caused by hardware constraints.

Unlike [19, 27, 28], the work in [21] exhibited an analytical model to dynamically adapt the

number of local updates between two consecutive global aggregations in real-time to minimize

the learning loss under a fixed resource budget of the edge computing system. Authors in

[29] proposed SCAFFOLD to control the difference between the optimization direction of

the local and global objectives (a.k.a. device drift). By exploiting the control variate (the

estimation of updating the global model and local model), a correction technique is applied to

overcome the data heterogeneity. SCAFFOLD has no assumption on data heterogeneity and

device sampling and is proven to converge in significantly fewer rounds of communication. In
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addition, there is a series of works focusing on sub-net (a subset of neural network) training

[30, 31] instead of updating the whole learning model so that the straggler effect due to the

limited computation or communication is alleviated. We left the corresponding discussion in

Section 2.2.3.

Similar to general machine learning tasks, using an advanced optimizer instead of SGD

in a federated network results in faster model convergence and is beneficial in reducing the

communication rounds. In particular, rather than using SGD optimizer, authors in [32]

adopted the momentum SGD to local training. Compared to local SGD optimizers in FL,

employing momentum SGD leads to a linear speedup in the convergence rate w.r.t. the

number of participating devices. Additionally, the number of communication rounds needed in

FL with momentum SGD optimizer is analyzed for both i.i.d. and non-i.i.d. cases. FedAC [33]

also applied momentum at the local device with periodic synchronization, which is proven to

obtain similar linear speed-up properties with asymptotically fewer rounds of synchronization.

Instead of using SGD with momentum as the local optimizer as in [32, 33], Liu et al. [34]

proposed to add a momentum term to Deterministic Gradient Descent (DGD), which can

realize more accurate training results with improved generalization and fast convergence.

With a similar convergence analysis as in [21], authors claim that the convergence rate of

momentum-DGD optimizer outperforms SGD-based FL under specific conditions.

Instead of minimizing the data sample-related loss function in (2.2), existing works add a

regularization term to form a new local objective and improve the convergence rate of FL

designs. With a generic ℓ2 regularization applied on different models [19], i.e., the Euclidean

distance between local models and the global model, each device is able to optimize its

model to better align with the direction of minimizing the global objective. The proposed

FedProx can control the side effects brought by data heterogeneity. FedDANE [35] adopted

a similar regularization term and formulated another term in local objective by following

the Distributed Approximate Newton method in distributed optimization. To solve the
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discrepancy between minimizing the local and global objectives, FedDyn [36] considered two

extra terms in addition to data-related loss as the local objective, including ℓ2 regularization

and a linear term which is formulated to align with the devices’ empirical loss surface. In

theory, FedDyn ensures that the consensus point of model convergence across devices remains

consistent with the global stationary solutions, as long as the local models converge regardless

of the data heterogeneity. Authors in [37] proposed to use model contrastive learning as

the regularization term. The proposed regularization loss is composed of the representation

distance of the local and global models, where a validation dataset is needed on the local

side. Recently, Qu et al. [38] proposed applying Sharpness Aware Minimization [39] to the

local solver and formulating the Federated form (FedSAM), which seeks to find a small

perturbation to be added to the learning model. The added perturbation results in a local

perturbed loss function, and minimizing the new local objective is beneficial in reducing

distribution shift and improving the generalization capability of the global model.

2.2.2 Improving the Convergence via System-level Optimization

Focusing on device-level optimization becomes imperative where the data and hardware

conditions are heterogeneous. Meanwhile, the server-side systematic designs responsible for

Model Aggregation, Device Selection, and Synchronization are essential to overall

system performance, as discussed in the following.

Model Aggregation. A natural way to improve the convergence rate of data-heterogeneous

FL is to quantify the difference between on-device data distribution and the population

(overall) data distribution over the federated network. Zhao et al. [12] quantified the weight

divergence by Earth Mover’s Distance, which is profiled based on the data distribution

difference. However, pushing a small set of uniformly distributed data to participating devices

in [12] violates the privacy concern of FL and imposes extra communication costs.
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Authors in [40] proposed to adaptively assign different weights for global model aggregation

by considering the time difference when the model update is done layerwise asynchronously.

To reduce the communication cost, the asynchronous FL updates the shallow and deep layers

of the neural network model at different frequencies. So, the model aggregation considers the

time difference, and the server assigns the most recently updated layers a higher weight in

aggregation. Similarly, authors in [41] suggested using age-aware aggregation in asynchronous

FL. Local devices send the model update to the server in different frequencies, making the

server aggregate the received model update difficult. On one hand, favoring the older updates

potentially balances the participating frequency among devices and reduces the risk of the

training model being biased toward the device with stronger computation capability. On the

other hand, favoring fresher models makes model convergence faster but at the risk of leading

to a biased global model with weak generalization capability. Thus, a variable related to the

device selection algorithm is added in model aggregation to mitigate the update asynchrony.

Further, Chai et al.[42] designed a tier-based FL system by dividing the participating devices

into tiers according to their responding time. The server assigns weights to different tiers

for model aggregation since varying update frequencies exist across tiers. Both methods in

[40–42] focus on the asynchronous FL and aim to weigh the local update along with different

communication rounds.

In addition to learning a global model, model aggregation can also be extended to the

personalized FL context [43, 44], where the personalized local model can control how to

adaptively aggregate model information from other devices. Zhang et al. [43] proposed a

similar idea to quantify the contribution from other devices (by global model) and combine

them with a set of designed weights for personalization. Particularly, the proposed FedFOMO

estimates how much the global model performs differently on the local device compared to

the same inference result with local models. The weight to update the local model in each

global round is measured by the division of performance difference (i.e., the difference of
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loss values) and ℓ2 distance between two models. To achieve the best personalization model,

devices weigh the models that most efficiently improve their local performance. Similar to

[43], Beaussart et al. [44] proposed to use different sets of weights for aggregation, with a

specific focus on personalization. In contrast to [43], the proposed WAFFLE has the server

to tune the weights for each device. These weights are computed based on the similarity

and the current degree of personalization in each global round. The server calculates the

Euclidean distance for each device by comparing its model update to the updates from other

devices. The farther away the device’s distance from others, the smaller weights the device

assigns when aggregating other’s model updates.

Device Selection. In vanilla FL design [5, 12, 19, 29], a subset of devices is involved to

improve the training efficiency, which is chosen randomly from a large number of candidate

devices in federated networks. The quality of chosen devices in terms of the on-device training

data and hardware capability are important for FL convergence. Hence, a thoughtfully

designed device selection process proves advantageous for enhancing performance.

Several works have been carried out focusing on device selection design to improve the FL

convergence rate, taking the system heterogeneity and uncertainty of wireless medium into

consideration [45–49]. Specifically, Nishio et al. [45] proposed to select devices intentionally

based on the resource condition on devices. Amiria et al. [46] designed a device scheduling

algorithm by considering the significance of local update measured by ℓ2-norm and channel

condition separately or jointly. For example, in BN2 algorithm [46], the server first selects a

macro set of devices to participate in local training. Subsequently, a subset of the macro set

is chosen for model aggregation by ordering the norm of gradient transmitted from devices

of the macro set. In [50], the authors proposed biased client selection strategies, that is,

preferentially choosing the device with higher local loss. Though the contribution-related loss

measurement leads to a faster convergence, the selection skewness imposes potential error,

and the local loss measurement results in additional communication and computation costs.
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Differently, references [47–49, 51, 52] focus on probabilistic device selection strategy where

each device is eligible to contribute to the global model, making them better balance the

exploitation and exploration. Particularly, the contribution and importance-based device

selections with different sampling criteria were proposed. Authors in [47] considered the

limited bandwidth resource for model transmission where device selection for global model

aggregation is of importance. The proposed method measures the device contribution

according to the norm of local updates, by which the probability for each device to be selected

is calculated so as to execute the device selection procedure. The devices with a higher norm

of local updates are chosen with higher probability, thus boosting the convergence rate when

limited bandwidth resource is provided. Along with [47], authors in [48] proposed to use

Artificial Neural Networks (ANNs) as a predictor to estimate the model updates of devices

that are not allocated the bandwidth for transmission, based on the model updates that are

successfully transmitted using limited bandwidth resource. The additionally included model

updates further accelerate the model convergence. Authors in [49] proposed a probabilistic

design by considering the importance of local update and transmission latency, where the

importance of local update is evaluated by gradient divergence between local gradients and

the ground truth global gradient. The probability for device selection is finally determined by

the local gradient norm and transmission latency. Chen et al. [51] designed an importance

sampling scheme that selects more informative devices. The device sampling procedure

minimizes the variance of local gradients for aggregation, while the probability for each device

to be chosen is proportional to the norm of local updates. In addition, authors in [52] applied

importance sampling for device selection on the server level and data selection on the device

level. Similar to [51], the optimal device selection is achieved by minimizing the bound on

the variance of gradient noise, i.e., the estimation error of the global gradient because of the

partial device participation. The probability for each device to be chosen is proportional to

the norm of its local updates.
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Similar to probabilistic device selection, Deep Reinforcement Learning (DRL) based

methods have been proposed by learning a device selection policy that can fasten the

convergence. Wang et al. [13] proposed to train the DRL agent by adopting the dimension-

reduced model updates and the global update as the state information. The agent is supposed

to judiciously select devices that may contribute to global model improvement so that the

reward signal is designed in order to improve the global model accuracy per global round

aggressively. A similar concept is applied to an energy-constrained FL framework [53]. The

optimization target in [53] is to select a subset of participants to guarantee the model quality

while maximizing energy efficiency for each individual participating device. One side effect

of the DRL-based method is that the RL agent is trained with tens to hundreds of fully

observed FL training processes, which might not be easy to realize and justifiable in practice.

Asynchronous FL. As a distributed learning paradigm, the model synchronization protocol

is crucial in FL. Traditional FL designs synchronize the model until all local model updates

are received, which may cause a long delay due to system heterogeneity. Otherwise, the

synchronization frequency can be fixed, and the server drops off the model updates that can

not be delivered on time by (staleness) devices, causing model convergence to be unstable. To

mitigate the negative effect caused by staleness devices, [54] proposed to use an asynchronous

manner to improve the system efficiency. The server updates the global model whenever

a local update is received. However, there is an inconsistency in the asynchronous update

scheme when devices come to obtaining model parameters from the server. Global feature

representation on the server and a dynamic learning step size for local training is proposed

to alleviate the inconsistency. The inconsistency in the asynchronous scheme is viewed

as the delayed gradient in [55]. To mitigate the error caused by delayed gradient, Zheng

et al. leveraged Taylor expansion of the gradient function and efficient approximation to

the Hessian matrix of the loss function to reconstruct the gap between the real gradient

and delayed gradient. The proposed scheme achieves system efficiency because no device
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needs to wait for others. In the meanwhile, the delay compensation eases the side effect

of asynchronous inconsistency. Xie et al. [56] used an asynchronous update and added a

regularization term in the local objective. Similarly to [40], the inconsistency problem is

alleviated by weighting the device’s updates in a time-dependent manner. In this way, the

contribution from devices that take a very long time in model aggregation is reduced. Authors

in [57] studied the empirical performance of synchronous and asynchronous-based FedAvg.

Results show that asynchronous-based FL design outperforms the synchronous FL in terms

of the task completion time for both i.i.d. and non-i.i.d. distribution. Additionally, the

experiment shows that the proposed asynchronous FL is robust to real-world situations where

devices join pathways through training or train at different speeds. Huba et al. [58] presented

Papaya, a framework that supports both synchronous and asynchronous model aggregation

for a large-scale simulation. In the next-word prediction task with massive candidate devices

(100 million Android phones), asynchronous FL is 5 times faster and has nearly 8 times less

communication overhead than synchronous FL in high concurrency settings.

It is worth noticing that some server-side optimization methods can be combined with

device-level methods to achieve better results or overcome specific obstacles. Instead of

achieving a faster convergent model and reducing the communication round, there are many

other works directly focusing on the transmission cost of the wireless link, as discussed in

Section 2.2.3.

2.2.3 Communication Cost Reduction over Wireless Link

To reduce the communication cost on wireless links, existing works focus on exploring the

superposition property of the wireless medium, low-precision quantization technique, and

model sparsification.
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Over-the-air Aggregation

The superposition nature of wireless channels allows gradients/model updates to be aggregated

Over-the-Air (OTA) and favors communication much more efficiently[59]. Communication

overheads are significantly decreased through the simultaneous transmission of all local

updates with shared communication resources. This approach can be categorized into digital

or analog schemes depending on which signal form (e.g., gradient) is transmitted over the

channel [60] [61]. In [60], the authors proposed a novel analog communication scheme, where

local devices first sparsify their gradient estimates while accumulating error from previous

iterations and project the resultant sparse vector into a low-dimensional vector for bandwidth

reduction. Authors in [61] designed digital gradient transmission schemes, where gradients

at each device are first quantized and then transmitted over a multi-access-channel to be

decoded individually at the server.

Zhu et al. in [62] proposed a multi-access Broadband Analog Aggregation (BAA) scheme

for communication-latency reduction, building on the concept of OTA computation. BAA

strategy identifies the trade-off that SNR improvement is at the cost of truncating model

parameters from the devices with a longer propagation distance in wireless networks, which

needs to be compromised by device scheduling. Simulation results show that the BBA

algorithm can reduce latency by 10 to 1000 times compared to FL design with traditional

Orthogonal Frequency Division Multiple Access (OFDMA) while maintaining the same model

accuracy. Though OTA is effective in reducing the wireless link burden, the superposition

signal is sensitive to transmission noise, which will essentially impact the local training,

especially for the near-convergent process where the gradient value is small. Thus, authors in

[63] proposed to use time-varying precoding that gradually mitigates the contribution of the

channel noise over time. To further reduce the communication cost, Yang et al. [64] proposed

to use second-order information in the local training process, where the second-order (Hessian
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matrix) information is combined with first-order (gradient) information by local Newton step

[65], and finally transmitted with OTA.

Quantization and Compression

A probabilistic quantization approach was proposed in [66], in which the update matrices are

vectorized and quantized for each model parameter. To reduce the error from quantization,

a structured random rotation based on the Walsh-Hadamard and binary diagonal matrix

can be applied before quantization. An extension [67] was made based on lossy compression

on the global model sent server-to-client and the dropout technique in the collaborative

learning context. Authors in [68] proposed communication-efficient FedAvg (CE-FedAvg).

By adopting Adam as optimizer and model compression, CE-FedAvg reduces the number

of communication rounds taken to reach a target accuracy and the total data uploaded per

round compared to the uncompressed case in FedAvg. In addition, for hyper-parameter value

in Adam, authors proposed to use the Uniform and Exponential Quantization method to

reduce transmission cost. These two schemes are used alongside sparsification and Golomb

encoding for the compression in CE-FedAvg.

Unlike [60], where the analog scheme was adopted, authors in [61] designed digital gradient

transmission schemes, where gradients at each device are first quantized and then transmitted

over a Multi-access Channel (MAC) to be decoded individually at the aggregator. A stochastic

gradient quantization scheme in [61] was proposed, where quantization parameters are

optimized based on the capacity region of MAC. Different from the Uniform and Exponential

Quantization method in [68], where the quantization gap is fixed, the stochastic multi-level

quantization scheme adopts the dynamic range of the gradient vector. Convergence analysis

shows that in order to maximize the convergence speed, devices whose gradients have a

higher dynamic range must be assigned a higher quantization budget. Similarly, in [69], the

quantization error is analyzed subject to the uplink transmission delay and outage constraint
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in each FL global round. By joint allocating the quantization bits and wireless resources, each

device can have the same transmission outage when minimizing the quantization error, making

the design more suitable for the federated network with transmission latency constraints.

Zheng et al. [70] analyzed the differences when applying the quantization technique to model

weight and gradient. Theoretical results show that transmitting the weight requires increasing

the quantitation level with a logarithmic rate, compared to a constant quantization level,

which is needed to transmit gradients/model updates. The conclusion provides an in-depth

insight into the bandwidth-accuracy tradeoff of FL design.

Sparsification

Under the original FedAvg algorithm where either full gradient or nothing (e.g., because of

a network outage, transmission delay, etc.) is sent, a more balanced approach is Gradient

Sparsification (GS)[71], which sends a sparse vector with partial information of the model

and provides a higher degree of freedom to achieve better communication and computation

trade-offs. To reduce the transmission cost, sending the most important part of the gradient

vector is straightforward, so-called top GS, where the parameters with the highest absolute

values are selected and transmitted, and the global model parameters are not evenly updated

in the meantime. To mitigate this effect, in each global round, periodic averaging GS

randomly selects and transmits a subset of gradient elements. After a finite number of rounds,

all elements of the full gradient can be aggregated at least once. However, the variance

raised by top and periodic averaging GS makes the convergence property insecure. Authors

in [72] proposed to use online learning to learn the near-optimal sparsity in FL, namely,

FAB-top. Instead of choosing several highest absolute values in each round, FAB-top utilizes

the accumulated gradient, from which the highest absolute values are chosen. Then, the

server aggregates the selected index-value pairs from local devices and identifies the sparsity.

Further, an fairness matrice is adopted to ensure that contribution is from every participating
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device.

Authors in [73] unified and identified the popular sparsification methods on SGD-based

FL as facets of general sparsification methods that can operate on any possible atomic

decomposition, for example, on element-wise and single value. With a given gradient, a

sparsity budget, and an atomic decomposition, the proposed framework ATOMO is able

to give a random unbiased sparsification of the atoms with minimized variance. Further,

the sparsification method has also been used in serverless network topology FL design [74].

Particularly, GossipFL was proposed in [74], where each device only needs to exchange a

highly compressed model with a single peer at every communication round. Meanwhile, the

authors designed a gossip matrix generation algorithm that can better utilize the bandwidth

resources while preserving the convergence property.

2.3 Model-Heterogeneous Federated Learning

In FL scenarios, the participating devices are naturally computation-heterogeneous, which

may only be capable of training models that align with their on-device resources. It is not

trivial to consider model-heterogeneous FL design, where the server assigns different models

that align with the devices’ capabilities. To aggregate information from heterogeneous models,

existing literature can be categorized into two main streams: knowledge distillation and

partial model training, and the latter one is generically explored in the general machine

learning context before FL, such as slimmable neural network.

Slimmable Neural Network

Yu et al. [75] proposed to train a Slimmable Neural Network, i.e., several model variants (with

a switch to control the model width) where the parameters on different variants are shared,

and their individual information is kept by individual batch normalization layers. Further,
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authors in [76] proposed Universal Slimmable Networks (US-Nets), which makes slimmable

neural networks more generalized with any model width. Both Slimmable Neural Network

and US-Nets aim to train several models simultaneously. In essence, the above methods are

so-called model-parallel training, where a portion of the learning model is partitioned across

different computing devices. When data is generated with individual features, model-parallel

training implies that different parts of the model can only be updated to reflect the present

data on any device. A fine-grained synchronization step is needed. Differently, Yuan et

al. [77] adopted the idea of individual subnet training called Independent Subnet Training

(IST), where a large neural network is evenly divided into non-joint subnets and updated

individually on different devices. IST focuses on cases where communication/memory is

limited on a single device. Since no synchronization is required during local updates, per-step

communication volume on multiple devices can be reduced. After synchronization, model

parameters are re-distributed based on a new random sampling method, and the IST process

repeats. Generally, the learning model in slimmable neural network [75–77] is evenly split into

different devices. Though the flexibility to match devices’ resources is provided, the applicable

scenario is limited, and the convergence guarantee is not observed in FL scenarios. Consider

a more general setting where a partial of the neural network model is masked from updating.

Authors in [78] analyzed the convergence rate of model training with partial-gradient using a

generic template called partial SGD (the combination of parameter perturbation and gradient

masking). The theoretical results can be used as a guide to create new training methods.

Knowledge Distillation for Federated Learning

One primary technique to exchange information between differently structured models

is Knowledge Distillation (KD), where devices with less computational capability enjoy

information from large models [79]. In FL, KD is used to transfer knowledge for both

homogeneous models [80, 81] and heterogeneous models [82]. Notably, FedDF proposed by
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Lin et al. [80] first trains several classifiers on local private data. Local classifiers then go

through public unlabeled data and generate logits. Each device’s information is treated as

a “teacher” whose information is aggregated into the global model (“student”) to improve

its generalization capability. Similarly, authors in [81] proposed a cluster-based knowledge

transfer where each device sends the logits (generated from local public data) back to the

server, in which devices can be grouped, and local models are aggregated to different global

models based on similarity. With multiple clusters, the proposed method is beneficial to

alleviate the data heterogeneity problem.

It is worth mentioning local models in COMET [81] are not necessarily homogeneous.

FedGKT [82], proposed by He et al., extends KD to heterogeneous model scenarios. Local

devices update the lightweight models in each global round, whose information is sent,

aggregated, and integrated into a large model on the server side via KD. The server’s

model could be larger than any local model. Meanwhile, with soft labels from server-side

training, local models’ performance is boosted by adopting the KD-based loss. To remove the

dependence of public data in KD-based FL, authors in [83] proposed to learn a generative

model at the server side, which is solely derived from the output of local devices. Given target

labels in the local side, the learned generator yields a feature representation that is consistent

with the ensemble of each device’s output. Though the generator provides information from

other peer devices, transferring the generator is necessary in each round, incurring more

communication costs.

Partial Model Training in FL

Authors in [23] introduced the US-Nets to the FL context for the first time and proposed

superposition coding and successive decoding to protect different parts of the learning model.

In [23], only 0.5× model width (left/right model) is considered, and the learning perfor-

mance is improved when including the partial model, which the designed superposition

30



coding/successive decoding strategy can guarantee. Study [23] focuses on the model trans-

mission but requires local devices to train the whole model, which is impractical for devices

with heterogeneous computational capabilities. Authors in [30] proposed a computation and

communication-efficient FL design for heterogeneous devices by allowing local models to

have different architectures from the global model. Different from [23, 75, 76], the proposed

HeteroFL [30] grants local devices various model architectures (size) according to their com-

putational capabilities and allows weak devices in terms of computation/ communication to

contribute to the global model in FL. HeteroFL enables sub-model generation in a static

way where sub-models are extracted from a designated part of the global model. Inspired

by Dropout [79] in centralized machine learning, it is straightforward to adopt Dropout

to FL to alleviate the resource-constrained local computing. As illustrated in [31], the FL

server randomly removes a subset of neurons and generates sub-models for the participating

device to meet its computation level. Similar to the static sub-model generation as in [30],

authors in [84] proposed FjORD, which combines the sub-model training and knowledge

distillation to improve the sub-model performance. As stated in [85], both [30, 31, 84] suffer

from performance degradation on high data heterogeneity. This is primarily due to the

limitation that different sub-models can only be updated on specific devices that match their

computation level, forcing different parts of the global model to be updated on samples with

different distributions.

However, the performance of Federated Dropout suffers from highly heterogeneous data

and the devices cohort when generating a partial model randomly. To overcome the drawback

of random [31] and static [30, 84] partial-model generation, authors in [85] proposed using a

rolling window to counteract uneven model updates by which all parts of the global model

are looped in sequence. This rolling process iterates each round until the global model is

evenly trained to converge.
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Chapter 3

Fast-Convergent Federated Learning

with Adaptive Weighting

The first question we would like to ask in this thesis is: How does statistical heterogeneity

affect federated optimization in a simple full-device participation scenario, and how can we

improve the convergence speed in such circumstances? This chapter presents answers to these

questions by exploring the statistical heterogeneity.

3.1 Overview

Federated Learning (FL) has emerged as an attractive paradigm, where local devices collab-

oratively train a task model under the orchestration of a central server without accessing

end-device data [7, 86]. Two major challenges separate FL from traditional distributed

optimization: statistical and system heterogeneity, making it difficult to apply to many

scenarios. In an attempt to handle the heterogeneity and reduce the communication burden

in FL, existing works allow multiple local updates [5] or, even in an adaptive way [21], on a

subset of total devices (S ⊂ K) in a federated network. In particular, Federated Averaging
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(FedAvg) [5] is the de facto optimization method in the federated setting, which employs a

small number of participating devices to run E epochs of local updates before exchanging

model information via the server, where all local models are simply averaged.

Even though the good performance of FedAvg is shown empirically, owing to the highly

skewed data across local devices and non-i.i.d. distribution in FL, communication cost

becomes a critical bottleneck in the FL context since generally several iterations are involved

for model convergence [5–7]. The presence of non-i.i.d. data significantly degrades the global

model performance, which makes model training take more rounds to converge, and the

variance caused by non-i.i.d. data brings instability to the training process [12, 13].

To surmount the slow convergence of vanilla FedAvg under the presence of non-i.i.d.

dataset, we propose Federated Adaptive Weighting (FedAdp) algorithm that aims to improve

the FL performance by assigning distinct weight for participating devices to update the global

model. We observe that devices with heterogeneous datasets make different contributions

to global objective minimization. Therefore, our main intuition is to measure the devices’

contribution based on the gradient information from local devices and then assign different

weights accordingly and adaptively at each communication round for global model aggregation.

According to device contribution, the proposed adaptive weighting strategy is capable of

reducing the expected training loss of FL in each communication round and accelerating the

model convergence. Different from existing works in [24, 87], our method does not impose

additional communication and computation burden on local devices. Besides, the proposed

adaptive weighting calculation is done in each communication round, which is distinct from

existing methods [40, 42].

Our main contributions in this work are as follows.

• We identify that the presence of devices with non-i.i.d. data distributions slows down

the convergence speed of FL. In addition, we analyze the convergence bound of gradient-
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descent-based FL from a theoretical perspective and derive the convergence bound that

incorporates the non-i.i.d. data distribution across participating devices and weighting

strategy for model aggregation.

• We observe the implicit connection between data distribution on a device and the

contribution from that device to the global model aggregation, measured at the central

server side by inferring gradient information of participating devices. The convergence

bound is lowered, and the convergence speed is accelerated by a carefully designed

weighting strategy, FedAdp, that assigns different weights to devices for global model

aggregation in each round of communication.

• We empirically evaluate the performance of the proposed weighting algorithm via

extensive experiments using different real datasets with different learning objectives

(i.e., convex and non-convex loss function). Our experimental results have shown that

FL training with FedAdp can drastically reduce the communication rounds compared

with the commonly adopted FedAvg algorithm.

Section 3.2 analyzes what factors impact the FL loss minimization in the SGD-based

federated optimization method and initiates the contributed-based weighting design. The

concrete design of the adaptive weighting algorithm is presented in Section 3.3, where the

contribution is measured by gradient similarity and quantified with a non-linear mapping

function. Comprehensive experimental results and related complete proof are shown in

Section 3.4 and Section 3.5. Finally, Section 3.6 summarizes this chapter.

3.2 Convergence Analysis

Before diving into the algorithm design, we first analyze the convergence property of the

SGD-based FedAvg algorithm. The theoretical analysis on the expected decrease of FL
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loss in each global round reveals that gradient similarity and weighting design impact the

convergence, which motivates us to weigh devices’ updates proportional to that similarity in

global model aggregation.

For theoretical analysis, we employ Assumption 2 and the following Assumption 4.

Assumption 4. Bounded Local Dissimilarity

For any participating device k, the dissimilarity between local objective and global objective at

w is bounded by A and B, i.e., A∥∇F (w)∥ ≤ ∥∇Fk(w)∥ ≤ B∥∇F (w)∥.

A similar Assumption has been made in the FL context, for example, in [19, 21, 24]. In

[19, 24], the dissimilarity across local gradients is imposed by an upper bound to capture

the impact of data heterogeneity on FL convergence, and an analogous definition named

gradient divergence is also presented in [21]. By tracking the divergence of gradients on

each participating device, we observe that the dissimilarity can be further bounded by a

lower bound, as shown in Assumption 4. Here ∇F (w) is the gradient of the global objective

that is defined as ∇F (w) = ∑|S|
k=1 ak∇Fk(w) in FL context. The local dissimilarity in

Assumption 4 can be seen as a metric that reveals the data heterogeneity when the same

training configuration (e.g., learning rate, batch size, training epoch, etc.) across participating

devices is held. As a sanity check, when all the local data samples are the same, we have

A = B = 1.

Theorem 1. With loss function Fk(w) satisfying Assumptions 2, 4 and supposing wt is not

a stationary solution, the expected decrease in the global loss function between two consecutive

rounds satisfies,

F (wt+1) ≤ F (wt)− ηEk,t
[(
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ −

BLη
2

)
· A

2

B ∥∇F (wt)∥2
]
, (3.1)

where the expectation Ek,t refers to the t-th global round weighting strategy of the participating
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device k ∈ S for global model aggregation.

The proof of Theorem 1 is given in Section 3.5.1. Theorem 1 provides a bound on how

rapid the decrease of the global FL loss can be expected. Based on Theorem 1, we have the

following corollary and remarks.

Corollary 1. The convergence upper bound of FL after T global rounds is given by,

F (wT ) ≤ F (w1)− η
T∑
t=1

Ek,t
[(
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ −

BLη
2

)
· A

2

B ∥∇F (wt)∥2
]
. (3.2)

Remark 1. The decrease of FL loss between two consecutive global rounds shows a de-

pendency on learning rate η, the bounded local dissimilarity of participating devices, the

correlation between the local gradient and the global gradient ⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ , and the

weight strategy Ek,t that weighs participating devices for the global model aggregation in

each global round.

Remark 2. The local gradient, which is correlated with minimizing the local objective,

may not align with the direction of approaching the optimal of the global objective. The

correlation ⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ between the local gradient and the global gradient is a metric to

measure their alignment level. From Theorem 1, we can see this metric also indicates how

much each device contributes to reducing FL loss in each round.

Remark 3. The FL loss F (wt+1) is negatively associated with the bound gap in Assumption

4, meaning that as bound gap [A,B] grows larger, the bound weakens, and the convergence ex-

acerbates. Intuitively, the root cause of dissimilarity is the divergence of local gradients across

participating devices with heterogeneous datasets, which can be intentionally regularized by

a properly designed weighting strategy.

An immediate suggestion from Theorem 1 that to improve the convergence of FL, one

can reduce the FL loss by increasing Ek,t [·] in each global round. This motivates us to

36



measure device contribution quantitatively through the correlation ⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ between

the local gradient and the global gradient and assign larger weights to the devices with higher

contribution to enlarge the expected decrease of FL loss in each global round.

3.3 Adaptive Weighting

3.3.1 Measurement of device Contribution

In FL, the direction of minimizing local objective Fk(w) might not align with the direction

of minimizing F (w). In particular, with a gradient aiming to minimize the local objective

associated with data distribution qk, the gradient on different devices may be tremendously

diverse, especially for participating devices with heterogeneous datasets. As such, the

contribution from participating devices for global aggregation is different. Empirically, we

note that if the data distribution on a device is highly skewed, the gradient may highly

deviate from or even in the opposite direction to the global gradient, causing a negative effect

on the global aggregation.

Instead of assigning weight for participating devices based on the size of datasets as in

FedAvg [5], we measure the contribution of participating devices based on the correlation

between the local gradient and global gradient. Particularly, we quantify the contribution of

each device at each global round based on angle θtk, which is defined as

θtk = arccos ⟨ ∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ . (3.3)

where the function “arccos” represents the inverse cosine function of the cosine similarity

between local gradient ∇Fk(wt) and the global gradient ∇F (wt) in each round t. From (3.3),

we can see that when the angle θtk is small, it means the local gradient ∇Fk(wt) has a similar

direction to the global gradient, thereby positively contributing to the global aggregation. In
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Figure 3.1: The smoothed angle θ̃k of participating device at different training rounds, where
star and pentagon sign denote the angle at communication round 1 and communication round
15, respectively. Devices with different data distributions are marked with different colors.

contrast, when θtk is large, e.g., larger than π/2, the local gradient ∇Fk(wt) has an opposite

direction to the global gradient, thereby negatively contributing to the global aggregation.

To restrain the instability caused by randomness presented in instantaneous angle θtk at

each round, we use so-called smoothed angle θ̃tk as a substitution, which is the averaged angle

over previous training rounds and is defined as

θ̃tk =


θtk t = 1

t−1
t
θ̃t−1
k + 1

t
θtk t > 1

. (3.4)

By using smoothed angle θ̃tk, the angle difference across devices uniquely depends on the

data distribution. Intuitively, the angle θ̃tk will be larger as the dissimilarity between data

distribution on device k and population distribution grows. Also, the smoothed angle is

capable of quantifying the degree of data dissimilarity among the local devices.

We conduct an experiment to illustrate how data distribution can be reflected by angle.
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Under the same training model in 3.3, we randomly assign i) 3 devices with 1-class non-i.i.d.

setting (i.e., device “A”, “B”, “C”), ii) 2 devices with 2-class non-i.i.d. setting (i.e., devices

“D” and “E”), and iii) the rest of 5 devices with i.i.d. setting.

As shown in Fig. 3.1, the smoothed angle between the local gradient and the global

gradient is full of randomness at the beginning of FL training (labeled with the star sign).

Along with the training, smoothed angle θ̃k indicated by the pentagon sign shows diversity

across the participating devices due to the impact of data heterogeneity on local training.

To be more specific, for those devices with 1-class non-i.i.d. setting, the data samples are

highly skewed since the label space is extremely limited. Due to the limited richness of data

samples on device k, the direction for minimizing its local objective Fk(w), which is reflected

by ∇Fk(w), will be far away from the direction for minimizing the overall objective F (w),

which is reflected by ∇F (w) = ∑|S|
k=1 ak∇Fk(w), resulting a greater θk as defined by (3.3).

As shown in Fig. 3.1, the gradient from the device with extremely skewed data (e.g., device

“A”, “B”, “C”) is nearly orthogonal with the global gradient after 15 communication rounds,

which barely brings a contribution to the global model. If we ignore the discrepancy of device

contribution and average local update according to the size of datasets, as in FedAvg, it slows

model convergence.

3.3.2 Federated Adaptive Weighting (FedAdp)

Provided the diverse device contribution from participating devices, the weighting strategy

affects Theorem 1 through the expectation Ek,t
[

⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥

]
consequently. To accel-

erate the convergence rate, we seek to lower the upper bound of the expected loss in each

communication round, which reveals to assign different weights ãk to different devices for

the global model aggregation. As such, the corresponding objective is formally stated as

enlarging Ek,t
[

⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥

]
= ∑|S|

k=1
⟨∇F (wt),∇Fk(wt)⟩

∥∇F (wt)∥∥∇Fk(wt)∥ · ã
t
k via designing ãk under the
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inherent constrain ∑|S|
k=1 ã

t
k = 1, ãtk ≥ 0 ∀k, t.

Considering the device contribution is measured by (3.3), a natural weighting design aiming

to enlarge the expectation should follow the criterion that devices with higher contribution

deserve higher weights for aggregation in each global round. We characterize the contribution-

regulated weighting strategy for the global aggregation in each global round adaptively as

Federated Adaptive Weighting (FedAdp).

Assigning adaptive weight for updating the global model in the proposed FedAdp algorithm

includes two steps.

Non-linear mapping function

We design a non-linear mapping function to first quantify the contribution of each device

based on angle information. Inspired by the sigmoid function, we use a variant of Gompertz

function[88], which is a non-linear decreasing function defined as

f̃(θ̃tk) = ς(1− e−e−ς(θ̃t
k

−1)
), (3.5)

where θ̃tk is the smoothed angle in radian, e denotes the exponential constant and ς is a

constant as explained in the following.

The designed mapping function has several properties that are important for the subsequent

weight calculation:

• limθ̃t
k

→π/2 f̃(θ̃tk) = ι, where ι ∝ 1
ς

is constant;

• lim0→θ̃t
k

→ν f̃(θ̃tk) = ς, where ν ∝ ς is a constant;

ς controls the decreasing rate of f̃(θ̃tk) from ς to ι as θ̃tk increases from ν to π/2. For

example, a small ς ∈ Z+ indicates a lower decreasing rate of f̃(θ̃tk) that decreases from ς to

ι ∝ 1
ς

as θ̃tk increases from ν ∝ ς to π/2. As ς increases, the gap between small angle and
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large angle is amplified (e.g., f̃(θ̃tk) changes within a relatively large range [ς, ι] as θ̃tk increases

within range [ς, π/2] ), so is the difference of contribution from those devices. However,

keeping increasing ς is not consistently effective to distinguish the difference of contributions

from devices. Since ν is proportional to ς, a large ς narrows the boundary [ν, π2 ] where the

device contribution should be considered, making the contribution of devices whose angle

lays between [0, ν] indistinguishable.

Weighting

After getting the contribution mapped using the smoothed angle from each device, we

use Softmax function to finally calculate the weight of participating devices for global model

aggregation as follows,

ãtk =


e

f̃(θ̃t
k

)∑|S|
k′=1 e

f̃(θ̃t
k′ ) |Dm| = |Dn|, ∀m,n ∈ S

|Dk|ef̃(θ̃t
k

)∑|S|
k′=1 |Dk′ |e

f̃(θ̃t
k′ ) |Dm| ≠ |Dn|,∃m,n ∈ S

. (3.6)

From the first line of (3.6), if all the participating devices have the same size of data

samples, the proposed FedAdp algorithm will assign weight solely based on their contribution

quantified by ef̃(θ̃t
k). From the 2nd line of (3.6), FedAdp will assign weight based on both the

contribution and the data size.

Remark 4. Different from FedAvg, where the weight for aggregation is solely proportional

to the size of local datasets (e.g., ak = |Dk|/
∑|S|
k′=1 |Dk|), FedAdp takes both the data size

and the node contribution into consideration when assigning weights for model aggregation.

The reason for adopting the Softmax function is twofold: i) The output of the Softmax

function is a normalized value with a larger angle corresponding to a smaller weight. ii) Using
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Algorithm 1 Federated Adaptive Weighting (FedAdp)
procedure Federated Optimization
Input: device set S, E,B, T, η,

1: Server initializes global model w1, global update ∆1, smoothed angle θ̃1
k, k ∈ S

2: for t = 1, · · · , T − 1 do
3: for device k ∈ S in parallel do
4: ∆t+1

k ← Local Update (k,wt
k)

5: wt+1 ← Global Update
(∆t+1

1 , ∆t+1
2 , · · · ,∆t+1

|S| )
procedure Local Update
Input: device index k, model wt

k

6: Calculate local updates for τ times of SGD with step-size η on Fk(w) and obtain wt+1
k

7: Calculate the model difference ∆t+1
k = wt+1

k −wt

8: return ∆t+1
k

procedure Global Update
Input: local update ∆t+1

1 , ∆t+1
2 , · · · ,∆t+1

|S|
9: Calculate the global gradient
∇F (wt+1) = ∑|S|

k=1(|Dk|/
∑|S|
k′=1 |Dk′ |)∇Fk(wt+1), where ∇Fk(wt+1) = −∆t+1

k /η
10: Calculate instantaneous angle θtk by (3.3)
11: Update smoothed angle θ̃tk by (3.4)
12: Calculate weight for model aggregation by (3.5), (3.6)
13: Update global model Ek,t [ãtkwt

k]
14: return wt

the Softmax function, each device’s contribution can be reinforced or suppressed, depending

on the smoothed angle between its gradient and the global gradient.

The complete procedures of the proposed FedAdp algorithm are presented in Algorithm 1

and FedAdp with adaptive weighting strategy leads to the following theorem.

Theorem 2. FedAdp with weight design ãk achieves a tighter bound on FL loss decrease in

Theorem 1 than FedAvg with weight ak.

The proof of Theorem 2 is provided in Section 3.5.2.

Compared to FedAvg, FedAdp adopts a simple yet effective strategy that measures the

device contribution by quantifying the correlation between the local gradient and the global

gradient. Weight for the global model updates can be adaptively assigned based on device
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contribution rather than evenly averaging, which results in greater FL loss reduction in

each global round and consequently accelerates model convergence, as confirmed by our

experimental results.

3.4 Numerical Results

To evaluate the performance of our proposed adaptive weighting algorithm, we implemented

FedAdp with PyTorch framework and PySyft library and studied the image classification

task. We evaluated FedAdp by training typical convex and non-convex learning models on

two datasets, MNIST and FashionMNIST, and when the different degree of skewness of

the non-i.i.d. dataset is presented, we investigated how FedAdp outperforms FedAvg[5] by

assigning adaptive weight for model aggregation.

We consider Multinomial Logistic Regression4 (MLR) model and CNN model5 to represent

convex and non-convex learning objectives, respectively. We use the number of communication

rounds for the FL model to reach a target testing accuracy as a performance metric. Unless

otherwise specified, the target accuracy is set to 95% for training on MNIST and 80% for

training on FashionMNIST6. The number of participating devices |S| = 10, |Dk| = 600, SGD

batch size 50 for MLR and 32 for CNN, E = 1, T = 300, η = 0.01, decay rate = 0.995, the

constant in non-linear mapping function ς = 5. The skewness of the dataset is measured by

x-class non-i.i.d.. The dataset for devices is generated in the same way as in Chapter 2.1.3.

Particularly, X i.i.d. + Y non-i.i.d. (1) (or (2)) represents X devices are at i.i.d. setting and
4For the MLR model, the input is a flattened 784-dimension (28×28) image, and the output is a class

label between 0 and 9. Note that the MLR model can be extended to the strongly convex setting by adding
regularization term [89].

5The CNN has 7 layers with the following structure: 5 × 5 × 32 Convolutional → 2 × 2 MaxPool →
5× 5× 64 Convolutional → 2× 2 MaxPool → 1024× 512 Fully connected → 512× 10 Fully connected →
Softmax (1,663,370 total parameters). All Convolutional and Fully connected layers are mapped by ReLu
activation. The configuration is similar to [5].

6FashionMNIST dataset contains 70,000 28 × 28 grayscale images of fashion products from 10 categories
from a dataset of Zalando article images, with 7,000 images per class.
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Y devices are at 1-class (or 2-class) non-i.i.d. setting.

3.4.1 Data Heterogeneity

We investigate the different number of non-i.i.d. devices with different skewness levels of

non-i.i.d. data to testify the efficiency of FedAdp. For non-i.i.d. data, two skewness cases that

x = 1, 2 are considered. We plot the test accuracy vs. the communication rounds of federated

learning in Fig. 3.2 and Fig. 3.3 when MLR and CNN models are adopted, respectively.

MLR Model
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Figure 3.2: Test accuracy over communication rounds of FedAdp and FedAvg with hetero-
geneous data distribution over participating devices using MLR model. Upper and lower
subplots correspond to training performance on MNIST and FashionMNIST datasets.

Given that the learning capability of MLR is limited, instead of setting a target accuracy, we

simply train a model over 50 global rounds. We plot the test accuracy vs. the communication

rounds of federated learning algorithms in Fig. 3.2. From Fig. 3.2, we can tell FedAdp

always outperforms FedAvg when the devices with non-i.i.d. dataset are present. In addition,

FedAdp converges very fast in the early training stage, and the superiority of FedAdp is more
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Figure 3.3: Test accuracy over communication rounds of FedAdp and FedAvg with heteroge-
neous data distribution over participating devices using CNN model. Upper and lower subplots
correspond to training performance on MNIST and FashionMNIST datasets, respectively.

prominent when the proportion of devices with non-i.i.d. datasets is larger. It is noted that

the gap between FedAdp and FedAvg over 50 global rounds is not conspicuous because of the

simplicity of the MLR model. Different weighting strategies will not make much difference

when the model is reaching its learning capability. In contrast, the weighting strategy will

consistently impact the FL training process when a more complex neural network model is

applied, as shown in the following experiment.

CNN Model

We plot the test accuracy vs. the communication rounds of federated learning in Fig. 3.3.

From Fig. 3.3, we can tell FedAdp always outperforms FedAvg when the devices with non-i.i.d.

dataset are present. In particular, FedAdp converges very fast in the early training stage

since the gradient divergence is more obvious in the initial rounds, which makes the effect of

assigning adaptive weight for updating the global model even more significant.

To measure the effectiveness of FedAdp, we count the number of communication rounds
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Table 3.1: Number of communication rounds to reach a target accuracy for FedAdp, versus
FedAvg, within 300 rounds. N/A refers that algorithms can not reach target accuracy before
termination where the highest test accuracy is shown

MNIST 95% Accuracy
1-class non-i . i .d.

3 i.i.d. + 7 non-i.i.d. 5 i.i.d. + 5 non-i.i.d. 6 i.i.d. + 4 non-i.i.d.
FedAvg N/A (94.48%) 133 99
FedAdp 187 61 58

2-class non-i . i .d.
FedAvg 120 104 81
FedAdp 75 59 52

Fashion MNIST 80% Accuracy
1-class non-i . i .d.

3 i.i.d. + 7 non-i.i.d. 5 i.i.d. + 5 non-i.i.d. 6 i.i.d. + 4 non-i.i.d.
FedAvg N/A (77.31%) 222 167
FedAdp N/A (79.5%) 125 107

2-class non-i . i .d.
FedAvg 258 196 134
FedAdp 207 107 94

needed to reach a target accuracy when FedAdp is adopted. Each entry in Table 3.1 shows

the number of communication rounds necessary to achieve a test accuracy of 95% for CNN on

MNIST and 80% for FashionMNIST. The bold number indicates the better result achieved by

FedAdp, as compared to FedAvg. FedAdp decreases the number of communication rounds by

up to 54.1% and 43.2% for the MNIST task when non-i.i.d. devices are at 1-class and 2-class

non-i.i.d. setting, respectively. For the FashionMNIST task, the corresponding decreases are

up to 43.7% and 45.4%, respectively. In the cases when the target accuracy is not reachable

before 300 rounds, FedAdp always terminates with higher testing accuracy.

Previously, two extremely skewness cases that x = 1, 2 are considered, while the superiority

of the proposed weighting strategy is not limited to extreme cases. To verify the proposed

weighting strategy in a more general data heterogeneity case, we consider the CNN model for

the MNIST dataset in the following two cases.

• Case 1: The number of classes of data samples owned by device k, denoted by xk, is

randomly selected from the set {1, 2, · · · , 10} without overlapping. Whereafter, the
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Figure 3.4: FL training performance over communication rounds when FedAdp is adopted
considering general heterogeneous data distribution over participating nodes. The top row
and bottom row represent the test accuracy and training loss over the communication round,
respectively.

data samples on each device are randomly selected from the xk-subset of the training

dataset.

• Case 2: For half of the devices, their xk (i.e., the number of classes of data samples)

is selected following the uniform distribution U(1, 5), whereas for the other half, xk

follows the uniform distribution U(6, 10). The data samples on each device are randomly

selected from the xk-subset of the training dataset.

From Fig. 3.4, we can see FedAdp outperforms FedAvg in both cases. In both cases, the

convergence performance is worse than the result in Fig. 3.3 because the number of i.i.d.

47



devices is small and the local dissimilarity is greater in these two cases. However, it is clear

by measuring device contribution, FedAdp is more rapid in reducing FL loss in each global

round thus accelerating model convergence, even without the participation of i.i.d. devices.

3.4.2 Choosing ς

One natural question is how to determine ς for non-linear function. A large ς may increase the

convergence by emphasizing the difference of contribution from participating devices, which

hastens model convergence in the initial training stage. Meanwhile, since ν is proportional to ς ,

a large ς also narrows the boundary [ν, π2 ] where the device contribution should be considered,

making the contribution of devices whose angle lays between [0, ν] indistinguishable.

We heuristically choose ς ∈ Z+ in the ascending order. From Fig. 3.5, increasing ς leads

to faster convergence since the gap between small angle and large angle is amplified, so is

the difference of contribution from those devices. However, a larger ς is not always effective,

especially after the initial training stage. Empirically, the best ς is 5 for our experimental

setting.

3.4.3 Divergence Measurement

Finally, in Fig. 3.6, we take one experimental case as an example to demonstrate the

divergence of local gradients, which captures the overall data heterogeneity of participating

devices. In particular, we track the divergence of gradients over all participating devices,

which is measured by ∑k∈S
1

|S|∥∇F (w)−∇Fk(w)∥. Empirically, we observe that our proposed

weighting strategy leads to smaller divergence among participating devices, and the smaller

the divergence, the smaller the FL loss. As wt is not a stationary solution along with

the training, aggregation by FedAdp is seen as a regularization process that restrains the

local weight wt+1
k trained by skewed datasets from being deviatory, which lowers the model
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Figure 3.5: Effect of setting ς on federated learning performance. Data heterogeneity setting
is 5 i.i.d. + 5 non-i.i.d. (1) and CNN model is adopted.

divergence and consequently accelerates the convergence.
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Figure 3.6: The connection between the model test loss and the divergence across local
gradients. The proposed weighting strategy FedAdp gives an impact on alleviating the
divergence brought by devices with skewed datasets. (1) Top row: the training loss on the
MNIST dataset under one data heterogeneity setting (5 i.i.d. + 5 non-i.i.d. (1)). (2) Bottom
row: the corresponding divergence measurement.

3.5 Complete Proof

3.5.1 Proof of Theorem 1

From the L-smoothness of F (w), we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+ L

2 ∥w
t+1 −wt∥2. (3.7)

The last two terms on the right-hand side of the above inequality are bounded as

• Bounding ∥wt+1 −wt∥2
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By the definition of the global aggregation for wt+1, we have

∥wt+1 −wt∥ = Ek,t
[
∥wt+1

k −wt∥
]
. (3.8)

By following SGD optimization, for each term within the expectation in the right-hand

side of (3.8), we have

wt+1
k = wt − η∇Fk(wt). (3.9)

∥wt+1 −wt∥2 = (Ek,t
[
∥wt+1

i −wt∥
]
)2 = η2(Ek,t

[
∥∇Fk(wt)∥

]
)2 1
≤ η2Ek,t

[
∥∇Fk(wt)∥2

]
,

(3.10)

where inequality 1 holds by Cauchy-Schwarz inequality.

• Bounding ⟨∇F (wt),wt+1 −wt⟩

Again, by the definition of the global aggregation for wt+1 and (3.9) we have

⟨∇F (wt),wt+1 −wt⟩ = −ηEk,t
[
⟨∇F (wt),∇Fk(wt)⟩

]
. (3.11)

The expectation term in (3.11) can be further rewritten as

Ek,t
[
⟨∇F (wt),∇Fk(wt)⟩

]
= Ek,t

[
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ · ∥∇F (wt)∥∥∇Fk(wt)∥

]
2
≥ Ek,t

[
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ ·

∥Fk(wt)∥2

B

]
, (3.12)

where inequality 2 comes from Assumptions 4 that local dissimilarity is upper bounded by B.

Plugging (3.12) into (3.11), then the last two terms on the right-hand side of (3.7) are
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expressed as

⟨∇F (wt),wt+1 −wt⟩+ L

2 ∥w
t+1 −wt∥2

≤− ηEk,t
[
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ ·

∥Fk(wt)∥2

B

]
+ Lη2

2 Ek,t
[
∥∇Fk(wt)∥2

]
3
≤− ηEk,t

[(
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ −

BLη
2

)
· A

2

B ∥∇F (wt)∥2
]
, (3.13)

where inequality 3 holds because of Assumptions 4 that local dissimilarity is lower bounded

by A.

Finally, Theorem 1 is proved by substituting (3.13) into (3.7).

3.5.2 Proof of Theorem 2

We consider the general case that participating devices have a different number of data samples.

For device k with data size |Dk|, we create |Dk| virtual devices, each with a unit sample size.

Hereinafter, we use index (k, j), j ∈ {1, · · · , |Dk|} to denote the j-th virtual device split from

the participating device k, k ∈ S, where the gradient information is kept on virtual devices as

on the participating device (e.g., ∇Fk,j(wt) = ∇Fk(wt), θk,j = θk). As such, all virtual devices

split by device k share the same weight (i.e., ãtk,j = ãtk,j′,∀j, j′ ∈ {1, · · · , |Dk|}), where ãtk,j

denotes the weight for virtual device (k, j). The weight of device k is ãtk = ∑|Dk|
j=1 ã

t
k,j = |Dk|ãtk,j.

From (3.3), θk,j = θk monotonically decreases with ⟨∇F (wt),∇Fi(wt)⟩
∥∇F (wt)∥∥∇Fi(wt)∥ . From (3.5), f̃(·) is a

decreasing function of θ. Thus, by that ãtk,j = e
f̃(θ̃t

k,j
)∑|S|

i′=1 |Dk′|e
f̃(θ̃t

k′ ) , we can see ãtk,j monotonically
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increases with ⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ . Therefore, generic ãtk,j satisfies the following criterion

ãtk,j ∝
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥

ãtk,j ≥ 0 ∀k, j, t
|S|∑
k=1

|Dk|∑
j=1

ãtk,j =
|S|∑
k=1

ãtk = 1, (3.14)

with the corresponding bound of the expected loss being

F (wt+1) ≤ F (wt)− η
|S|∑
k=1

(
⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥ ã

t
k −

BLη

2

)
· A

2

B
∥∇F (w)∥2. (3.15)

where ãtk is defined as in (3.6).

In order to compare the expected loss achieved by FedAdp and FedAvg, one can simply

measure the expectation term in (3.1). We use uk,j to denote the contribution from virtual

device j of participating device k for model aggregation. In each global round, we sort the

contribution from all the virtual devices that is measured by the correlation ⟨∇F (wt),∇Fk(wt)⟩
∥∇F (wt)∥∥∇Fk(wt)∥

between the local gradient and the global gradient in descending order, that is u1,1 =

u1,2 = · · · = u1,|D1| ≥ u2,1 = u2,2 = · · · = u2,|D2| ≥ · · · ≥ u|S|,1 = u|S|,2 = · · · = u|S|,|D|S||.

Apparently, the weight assigned to virtual device in FedAdp should follow the same order

ã1,1 = ã1,2 = · · · = ã1,|D1| ≥ ã2,1 = ã2,2 = · · · = ã2,|D2| ≥ · · · ≥ ã|S|,1 = ã|S|,2 = · · · = ã|S|,|D|S||,

with ∑k

∑
j ãk,j = 1. As such, by Chebyshev’s inequality [90], we have the following hold for

any um,j, un,j′

ā(um,j − un,j′)( ãm,j
ām,j

− ãn,j′

ān,j′
) ≥ 0

ā[um,j ãm,j ān,j′ + un,j′ ãn,j′ ām,j] ≥ ā[um,j ãn,j′ ām,j + un,j′ ãm,j ān,j′ ], (3.16)

where ā = ām,j = ān,j′ = 1
|D| denotes the weight of FedAvg for all virtual devices with
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|D| = ∑|S|
k |Dk|.

Adding all the |D|2 inequalities, we have

ā

 |S|∑
m=1

|Dm|∑
j=1

|S|∑
n=1

|Dn|∑
j′=1

um,j ãm,j ān,j′ + un,j′ ãn,j′ ām,j


≥ā

 |S|∑
m=1

|Dm|∑
j=1

|S|∑
n=1

|Dn|∑
j′=1

um,j ãn,j′ ām,j + un,j′ ãm,j ān,j′


|S|∑
m=1

|Dm|∑
j=1

um,j ãm,j

|S|∑
n=1

|Dn|∑
j′=1

ān,j′

︸ ︷︷ ︸
=1

+
|S|∑
n=1

|Dn|∑
j′=1

un,j′ ãn,j′

|S|∑
m=1

|Dm|∑
j=1

ām,j︸ ︷︷ ︸
=1

≥
|S|∑
m=1

|Dm|∑
j=1

um,j ām,j

|S|∑
n=1

|Dn|∑
j′=1

ãn,j′

︸ ︷︷ ︸
=1

+
|S|∑
n=1

|Dn|∑
j′=1

un,j′ ān,j′

|S|∑
m=1

|Dm|∑
j=1

ãm,j︸ ︷︷ ︸
=1

2 ·
|S|∑
m=1

|Dm|∑
j=1

um,j ãm,j ≥ 2 ·
|S|∑
m=1

|Dm|∑
j=1

um,j ām,j

∑
m

umãm︸ ︷︷ ︸
FedAdp

4
≥
∑
m

umam︸ ︷︷ ︸
FedAvg

.
(3.17)

where um = um,1 = · · · = um,|Dm|. Inequality 4 holds because ãm = ãm,j · |Dm| and

am = ām,j · |Dm| with ãm and am denoting the weight for model aggregation in FedAdp and

FedAvg, respectively. The equality 4 holds when ui = uj,∀k, j ∈ S.

Due to the greater expectation term in (3.1). FedAdp results in a greater decrease of FL

loss in each global round, as compared to FedAvg. This completes the proof.

3.6 Summary

In this chapter, we have presented our design of FedAdp algorithm that assigns devices

with different weights for updating the global model in each round adaptively to reduce
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the communication rounds of FL training in the presence of non-i.i.d. data. We argue that

non-i.i.d. data exacerbates the model divergence and observe that the devices with non-i.i.d.

data make a smaller (or even negative) contribution to the global model aggregation than

the devices with i.i.d. data. We have proposed to measure the device contribution based on

the angle between the local gradient and global gradient and designed a non-linear mapping

function to quantify device contribution. We have designed an adaptive weighting strategy

that assigns weight proportional to device contribution instead of according to the size of local

datasets. The simple yet effective strategy is able to reinforce positive (suppress negative)

device contribution dynamically, leading to a significant communication round reduction. Its

performance superiority over FedAvg is verified both theoretically and experimentally. We

have shown that FL training with FedAdp has reduced the communication rounds by up to

54.1% on the MNIST dataset and up to 45.4% on the FashionMNIST dataset compared to

FedAvg.

55



Chapter 4

Device Selection Toward Faster

Convergence for Federated Learning

on Non-IID Data

4.1 Overview

To improve the system efficiency, it is crucial to choose a subset of devices among a large

number of candidate devices. Statistical heterogeneity makes random device selection [5]

inefficient in FL training because the directions of minimizing local objectives may contradict

each other [24]. Several works focus on device selection strategies based on different criteria

to handle different scenarios. e.g., wireless channel [47, 49], computation capability [45], and

data heterogeneity [49, 50, 52, 60]. Prominently, to handle the data heterogeneity problem,

authors in [49, 52, 60] proposed to use the magnitude of the norm of local gradient as the

indicator to measure the device’s contribution and select the devices, which is inaccurate and

ineffective, as analyzed theoretically and empirically in this chapter.

To balance the exploration and exploitation of the contribution from all candidate devices,
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we adopt the probabilistic framework for device selection based on the correlation between

local updates and the global update, which is better for profiling the device contribution,

compared to methods in [46–49, 51, 52]. Particularly, for FL with the heterogeneous dataset,

we analyze the convergence property of FedAvg theoretically and challenge the necessity of

global model aggregation over all participating devices. Then, the Optimal Aggregation

algorithm is proposed, which can identify and exclude the adverse local updates to make

greater progress on reducing the expected decrement of global loss in each round. The

FL with probabilistic device selection (FedPNS) is proposed based on the result of Optimal

Aggregation. FedPNS adjusts the probability for each device to be selected, and the server

is able to preferentially select devices that propel a faster model convergence. Note that

our probabilistic device selection is conducted on the server side, which does not impose

additional communication costs. Our main contributions in this work are as follows.

• We analyze the convergence bound of the commonly adopted (FedAvg) algorithm [5]

from a theoretical perspective and derive the expected decrease of FL global loss,

considering the data heterogeneity and the way to aggregate local updates.

• We challenge the necessity of global model aggregation over local updates of all partici-

pating nodes and propose Optimal Aggregation to identify and exclude the potential

adverse local updates, which enlarges the expected decrease of global loss in each round.

• We design FedPNS, a probabilistic device selection scheme that enables the server

to dynamically adjust the probability for each node to be selected in each round,

based on the result of Optimal Aggregation. FedPNS tendentiously selects nodes that

boost model convergence. The convergence rate improvement of FedPNS over FedAvg

is illustrated theoretically, and the imposed computational complexity of FedPNS is

discussed.
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• We empirically evaluate the performance of FedPNS via extensive experiments using the

synthetic dataset and real datasets with different learning objectives. The experimental

results show the effectiveness of FedPNS in improving the convergence rate of the FL

model compared with the commonly adopted FedAvg algorithm.

Section 4.2 provides a sanity check of FedAvg, which indicates the necessity of excluding

the potential adverse local updates, laying the basis of probability adjustment of the proposed

framework. Section 4.3 discusses how probabilistic device selection outperforms random

device selection from the perspective of convergence property. Comprehensive experimental

results and related complete proof are shown in Section 4.4 and Section 4.5. Finally, Section

4.6 summarizes this chapter.

4.2 Contribution-based Device Selection

4.2.1 Sanity Check of FedAvg

For theoretical analysis purposes, we employ Assumption 1 - 3, and the following Assumption

5 to the loss function, which have also been commonly made in the literature [19, 20, 22, 24].

Assumption 5. ϕ-local dissimilarity. Local loss functions Fk(wt) are ϕ-local dissimilar

at wt, i.e., ES [∥∇Fk(wt)∥2] ≤ ∥∇F (wt)∥2ϕ2 for k ∈ S and t = 1, · · · , T , where T is the

number of global rounds. ES [·] denotes the expectation over participating devices S with weight

ak (as in equation 2.1). ∇F (wt) is the global gradient at the t-th global round defined as

∇F (wt) = ∑
k∈S ak∇Fk(wt).

The discrepancy between the local objective and global objective caused by the data

heterogeneity is captured by Assumption 5, which has been made in previous work [20, 24].

As the data distribution across participating devices becomes more heterogeneous, the local
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updates (i.e., gradient) will diverge from each other, and ϕ will increase. On the other hand,

if the data samples on participating devices follow the same data distribution, the local

gradients become more similar, and ϕ goes to 1.

Lemma 1. Let assumptions 1 and 5 hold. Suppose that wt is not a stationary solution; the

expected decrement on the global loss of FedAvg between two consecutive rounds satisfies

F (wt+1) ≤ F (wt)− ηES
[
⟨∇F (wt),∇Fk(wt)⟩

]
+ Lη2

2 ∥∇F (wt)∥2ϕ2, (4.1)

where η is the learning rate of SGD.

The proof of Lemma 1 is presented in Section 4.5. Lemma 1 provides a bound on how rapid

the decrease of the global FL loss can be expected. The decrease of global FL loss between

two consecutive rounds shows a dependency on ϕ, which represents the variance between

local data distributions, and the aggregation strategy ES [·], where ∇F (wt) is obtained by

aggregating over local updates from all participating devices, i.e., ∇Fk(wt), k ∈ S with weight

ak = |Dk|/
∑|S|
k=1 |Dk|.

4.2.2 Aggregation with Gradient Information

In vanilla FedAvg [5] and the subsequent work [12, 13, 19, 21], the averaging technique is

used for global update aggregation due to its simplicity. One can challenge the inherent rule

that the global update is aggregated over local updates of all participating devices since the

local updates may contribute global model in an adverse way. As a sanity check, at any

communication round t, the local update from the participating devices whose inner product

between their gradients and global gradient is negative i.e., ⟨∇F (wt),∇Fk(wt)⟩ < 0, will

slow the model convergence because of the reduced expected loss decrement (i.e., a lower

expectation value as in (4.1)) in this round. As such, it is not trivial to exclude the adverse
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local updates, which is realized by examining the value of expectation term in Lemma 1, as

illustrated later. Excluding adverse local updates gives an impact on the reduction of overall

data heterogeneity, thus changing the relationship between the local gradient and the global

gradient ⟨∇F̂ (wt),∇Fk(wt)⟩, where ∇F̂ (wt) = 1
|S̃|
∑
k∈S∗ ∇Fk(wt) is defined over S∗, i.e.,

the subset of participating devices S after successfully excluding the devices with adverse

local updates.

To find the optimal subset of local updates to aggregate, we first check the expectation term

ES [⟨∇F (wt),∇Fk(wt)⟩] in Lemma 1 and exclude the local updates from participating devices

k, i.e., k ∈ S−S̃ if ES̃

[
⟨∇F̂ (wt),∇Fk(wt)⟩

]
> ES [⟨∇F (wt),∇Fk(wt)⟩] is satisfied. However,

excluding local updates gives an impact on the global update and overall data heterogeneity,

i.e., ∥∇F (wt)∥2ϕ2, the last term on the right-hand side of (4.1), which makes the expected

decrement of global loss, i.e., ∆F (wt) = Lη2

2 ∥∇F (wt)∥2ϕ2 − ηES [⟨∇F (wt),∇Fk(wt)⟩], diffi-

cult to be analyzed quantitatively given L and ϕ. Therefore, in the second step, test loss

is adopted to ensure that excluding local updates makes global updates better in terms of

model convergence, as in [50]. In particular, the global model wt+1 and w̃t+1 generated by

∇Fk(wt), k ∈ S and ∇Fk(wt), k ∈ S̃, respectively, are evaluated using mini-batch of samples

uniformly chosen at random from Dtest (e.g., test dataset in MNIST).

An iterative algorithm called Optimal Aggregation is proposed for a better local update

aggregation in each round, which finds the optimal subset of local update ∆k, k ∈ S∗ ⊆ S by

excluding the adverse local updates ∆k, k ∈ S \ S∗, as in Algorithms 2. Specifically, for a

given set of participating devices S in each global round t, the server iteratively removes one

of the local updates ∇Fk(wt), k ∈ S, generates the potential global gradient, and calculates

the expectation term in (4.1) (i.e., Check Expectation, line 18-21). If excluding

one local update gives a higher expectation value, compared with the case that includes

all local updates retained in S, that local update will be labeled, and loss comparison will

be performed to check the loss criterion (Check Loss, line 22-25), otherwise the server
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keeps all local updates (line 6). If the loss criterion is satisfied (line 13), the labeled local

update is eventually removed from set S (line 14). Otherwise, the server keeps that local

update retained in S (line 12). The process repeats until no adverse local update can be

found or the number of remaining local updates is below a threshold v (line 4). In Algorithm

2, the function pop is defined as removing an element (line 14). The introduced “temp” is a

dictionary with key-value pairs (line 5) and the function max returns the maximum value

(line 6) or the key (i.e., the device index k) corresponding to that value (line 9), respectively.

Given a set of participating devices S, the benefits of finding optimal local updates

are twofold: (i) Excluding the potential local updates that contribute to the global model

adversely results in a larger decrement of the expected loss in each round. (ii) By Check

Expectation, the potential adversarial devices k, k ∈ S \ S̃ (devices with non-i.i.d.

dataset normally) are identified. This identification can be used for consequent probabilistic

device selection, as illustrated in Section 4.2.3.

4.2.3 FL with Probabilistic Device Selection

Providing the variety of different devices on contributing global model, to improve the

convergence rate, one can seek to preferentially select the devices with higher contribution

(i.e., the devices with i.i.d. dataset, as observed in [5]). As such, we propose a probabilistic

device selection design that dynamically changes the probability for each device to be selected

in each communication round, based on their data distribution-related contribution, which

can be distinguished by the procedure check expectation in Optimal Aggregation.

As we know in each round of FL, a number of devices are selected to participate in the

local update and global aggregation. It is natural to lower the device selection probabilities

for those devices whose local updates slow model convergence. Therefore, on the server-side,

we propose to dynamically change the probability for each device to be selected via using the
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Algorithm 2 Optimal Local Updates for Aggregation
Procedure Optimal Aggregation
Input: S, ∆t

k, v, temp = {}
1: ∇F (wt

k) = −∆t
k/η

2: ∇F (wt) = 1
|S̃|
∑
k∈S ∇Fk(wt)

3: max = ES [⟨∇F (wt),∇Fk(wt)⟩]
4: while |S| ≥ v do
5: temp ← Check Expectation (∇Fk(wt), S, temp)
6: if max(temp).value < max do
7: break with S∗ = S
8: else
9: key = max(temp).key

10: ls(w), ls(w̃), S̃ ← Check Loss (∇Fk(wt), S, key)
11: if ls(w) > ls(w̃) do
12: break with S̃, S∗ = S
13: else
14: S,S∗ ← S.pop(key)
15: max ← temp(key).value
16: return S∗, S̃
17: wt+1 ← Global Update (∇Fk(wt), S∗)
Procedure Check Expectation
Input: ∇Fk(wt), S, temp
18: for k = 1, · · · , |S| do
19: S̃ ← S.pop(S[k])
20: ∇F̂ (wt) = 1

|S̃|
∑
k∈S̃ ∇Fk(wt)

21: temp(S[k]) = ES̃

[
⟨∇F̃ (wt),∇Fk(wt)⟩

]
Procedure Check Loss
Input: ∇Fk(wt), S, key
22: S̃ ← S.pop(key)
23: Generate global model wt+1 by ∇Fk(wt), k ∈ S and ŵt+1 by ∇Fk(wt), k ∈ S̃, respectively
24: Evaluate wt+1, ŵt+1 by using mini-batch samples from Dtest and get the loss ls(w) and

ls(ŵ), respectively
25: return ls(w), ls(ŵ), S̃
Procedure Global Update
Input: ∇Fk(wt), S∗

26: Generate wt+1 by ∇Fk(wt), k ∈ S∗ via weighted summation with weight ak
27: return wt+1

output of Optimal Aggregation (i.e., S̃). In particular, the probabilities for those devices

that are labeled by the procedure check expectation (i.e., k ∈ S − S̃) are decreased
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according to the parameter x in (4.2), and the probabilities for all the rest devices will be

increased.

∆ptk = ptk · min[(x+ β)α, 1], k ∈ S \ S̃, (4.2)

where ptk and ∆ptk denote the probability for device k to be selected in the t-th global

round and its probability decrement in the next round, respectively. min function returns

the minimum value among all arguments, x ∈ (0, 1] is defined as the ratio between the

accumulated times that a device is labeled by the procedure Check Expectation

and the accumulated times that the device is selected, α ∈ Z+, β ∈ [0, 1] are coefficients as

explained in the following.

• limx→ϵ(x+ β)α ≈ 1, where ϵ ∝ α is constant.

• lim0→x→υ(x+ β)α ≈ β, where υ ∝ α is a constant.

α controls how big the probability decrement is achieved by (x+ β)α given a ratio x. For

example, a large value of α brings an aggressive decrement since the probability decrement

happens in a wide range (β, 1) as x increases within a small range (υ, ϵ), making the device

selection probability drop very quickly when x grows. Meanwhile, the large α makes device

selection sensitive to the identification mistake, which may prevent i.i.d. devices from being

selected in the subsequent rounds. However, setting a small value of α is not consistently

effective in differentiating the devices since the probability change is marginal. β is adopted

to keep the rate of probability change in a visible range [β, 1]. From experiments, we find

out α = 2, β = 0.7 is a good choice that balances the tradeoff. The choice of α and β is

empirically investigated in Section 4.4.

After getting the probability change for the labeled devices (i.e., k ∈ S \ S̃), we equally
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Algorithm 3 FL with Probabilistic Device Selection
Procedure Federated Optimization
Input: E,B, η,K, T, ptk i = 1, · · · , |K|

1: Server initializes w1, p1
k = 1/|K|

2: for t = 1, · · · , T do
3: Server samples a subset S of devices according to pt−1

k

4: Server sends wt to devices k ∈ S
5: Each device k ∈ S optimizes Fk(wt) using SGD and sends back ∆t

k to the server
6: wt+1, S̃ ← Optimal Aggregation
7: Server updates ptk, k = 1, · · · , |K| by (4.2) and (4.3) for next round’s usage
8: return wT

Procedure Optimal Aggregation
Input: S, ∆t

k, v, temp = {}
9: Direct to Algorithm 2

10: return wt+1, S̃

increase the probability for all the rest devices k ∈ K \ (S \ S̃), as shown in (4.3).

pt+1
k =


ptk −∆ptk k ∈ S \ S̃

ptk +
∑

k∈S\S̃ ∆pt
k

|K\(S\S̃)| k ∈ K \ (S \ S̃)
, (4.3)

where pt+1
k , k ∈ K are used for the (t+ 1)-th round.

We summarize the proposed FL design with probabilistic device selection and optimal

aggregation in Algorithm 3. Particularly, in each commutation round t, after the server

receives the local update from participating devices k ∈ S, the server identifies the devices

that are labeled by the procedure check expectation (i.e., S − S̃) and the remaining

devices for aggregation S∗, which are used to regulate the probability for subsequent rounds

(line 7) and aggregate the global model for this round (line 6).
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4.3 Convergence Analysis

To facilitate theoretical analysis, we introduce the auxiliary parameter vt, which is optimized

w.r.t. the global loss function F (v) in the centralized setting. vt is a virtual sequence since

F (v) is only observable when all data samples are available at a central place. We use w̃t to

denote model weight with full node participation, i.e., w̃t = ∑|K|
k=1

1
|K|w

t
k. We define that vt is

“synchronized” with w̃t at the beginning of each global round, i.e., at the beginning of the

t-th global round, the initial value of vt is set as vt−1 = w̃t−1. At the end of the t-th global

round, the update rule of the centralized SGD is as follows.

vt = vt−1 − η

 1
|D|

∑
z∪,s∈D

−
(

C∑
c=1

q(y∪,s = c)Ex∪,s|y∪,s=c [loglc(w,x∪,s, y∪,s)]
) , (4.4)

where z∪,s = {x∪,s, y∪,s} denotes the s-th sample of the centralized dataset D and q(y∪,s = c)

is the population distribution of the s-th sample over class c. For simplicity of the proof,

we omit the sample index s and use zk = {xk, yk} to represent the training sample from Dk.

Similarly, z∪ = {x∪, y∪} represent the samples from D.

We first quantify the weight divergence ES∥wt − vt∥ between wt and vt, for any global

round t, t = 1, · · · , T . Then, by combing the result in [21], we obtain the convergence rate of

FedPNS.

Theorem 3. Consider K local devices with equal data size, and the data samples on device

k ∈ K follow the data distribution qk. Let assumptions 3 and 5 hold. Assume a fixed number

of local updates τ exists between two consecutive global rounds. Then, the weight divergence

in FedPNS after the (t− 1)-th synchronization satisfies,

ES∥wt − vt∥ ≤ η
|K|∑
k=1

(piGi + 1
|K|

qdifk (
τ−1∑
r=1

ϖrgmax(vtτ−1−r))), (4.5)

65



where gmax(v) is defined as maxCc=1∥∇Ex∪|y∪=c [loglc(w,x∪, y∪)] ∥; ϖ = 1+ηL. qdifk is defined

as ∑C
c=1 ∥(qk(yk = c)− q(y∪ = c)∥.

Remark 5. The weight divergence between wt and vt mainly comes from two parts, the

bound of the norm of local gradient from each participating device, i.e., ∑|K|
k=1 pkGk, and the

weight divergence introduced by the difference between the data distribution on device and

population distribution, i.e., qdifk . FedPNS preferentially selects devices with a smaller bounded

gradient, which results in a smaller weight divergence, compared with device selection with

equal probability in FedAvg, i.e., ∑|K|
k=1 pkGk ≤

∑|K|
k=1

1
|K|Gk.

Theorem 4. When η ≤ 1
L

, compared with FedAvg, FedPNS with a smaller weight divergence

achieves tighter upper bound after T global rounds, i.e., F (wT )−F (w∗), where F (w∗) denotes

the optimal model parameter that minimizes F (w).

Proof. Theorem 4 is proven by combing the weight divergence ES∥wt − vt∥ in Theorem 3

with the result in [21, Theorem 2]. From Theorem 3, it is straightforward to see that the

weight divergence ES∥wt−vt∥ in FedPNS is smaller than that in FedAvg. From [21, Theorem

2], we have F (wT )− F (w∗) ∝ ES∥wt − vt∥, i.e., a smaller weight divergence in each global

round t, t = 1, · · · , T results in a smaller gap between the global loss after T global round

and the global loss with optimal model, F (wT )− F (w∗), which completes the proof.

4.4 Numerical Results

We now present empirical results for the proposed probabilistic device selection strategy.

We implement FedPNS on different tasks, models, datasets, and compare with commonly

used benchmark FedAvg. We first demonstrate the effectiveness of the proposed Optimal

Aggregation in enlarging the expected decrement of FL global loss and in identifying

the potential adversarial devices (Section 4.4.1). Then, the superiority of the proposed
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FedPNS in the presence of different data heterogeneity is illustrated in Section 4.4.2. All

code, data, and experiments are publicly available as an open-source GitHub repository at:

github.com/HongdaWu1226/FedPNS.

We briefly describe our adopted datasets, learning model, and experiment setting as

follows.

Synthetic data. To better characterize the data heterogeneity and study its impact on

model convergence, we generate synthetic data by following a similar setup as in [19, 91]. In

particular, the data samples {xk, yk} on local device k are generated according to the model

yk = argmax(softmax(wxk + bk)),xk ∈ R60,wk ∈ R10×60, bk ∈ R10. We set w, b ∽ N (0, 1).

For the data on i.i.d. devices, x follows the same distribution N (0,Σ), where Σ is diagonal

with Σh,h = h−1.2. For the data samples on non-i.i.d. device k, xk ∽ N (ok,Σ), each element

in the mean vector ok is drawn from N (Bk, 1), Bk ∽ N(0, ϱ). As such, a big value of ϱ denotes

a more heterogeneous data scenario. The training set and testing set are randomly split with

80%− 20% proportion on each device. A Multinomial Logistic Regression (MLR) model is

applied to the synthetic data.

Real data. We explore different learning objectives on different real datasets, which

are considered in prior works [5, 19]. In Section 4.4.2, we start with a convex classification

problem with MNIST [92] using MLR model. Then, for the non-convex setting, we consider

two CNN models for MNIST and CIFAR-107 [93], which are referred as CNN-M8 and CNN-C9

hereinafter.
7CIFAR-10 dataset contains 60,000 32 × 32 color images in 10 different classes. The 10 different classes

represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6,000 images of
each class.

8The CNN-M model has 7 layers with the following structure: 5× 5× 10 Convolutional → 2× 2 MaxPool
→ 5× 5× 20 Convolutional → 2× 2 MaxPool → 320× 50 Fully connected → 50× 10 Fully connected →
Softmax. The second convolutional layer is with 50% dropout. All Convolutional and Fully connected layers
are mapped by ReLu activation.

9The CNN-C model has 8 layers as structured follows: 5 × 5 × 6 Convolutional → 2 × 2 MaxPool →
5×5×16 Convolutional→ 2×2 MaxPool→ 400×120 Fully connected→ 120×84 Fully connected→ 84×10
Fully connected → Softmax. ReLu activation is applied to all layers.
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Figure 4.1: Performance of the proposed Optimal Aggregation. (1) Left: The training
loss on the MNIST dataset when different aggregation strategies are adopted. Optimal
Aggregation and FedAvg aggregate local updates over S∗ and S, respectively. (2) Right: We
use a triple to observe the result of Optimal Aggregation, which includes the accumulated
times that each device is selected, labeled by Check expectation, and excluded
eventually by Check loss during FL model training. The upper and bottom row refer to
the results for i.i.d. devices and non-i.i.d. devices, respectively.

Through the experimental result, unless otherwise specified, we evaluate the accuracy of

the trained models using the testing set from each dataset. The fraction for selecting devices

is set to be 0.2, |S| = 10, |Dk| = 200, E = 1, T = 200, η = 0.01, decay rate = 0.995, v = 0.7,

batch size in local training and Check Loss are 20 and 128, respectively. For real datasets,

the overall data heterogeneity is measured by σ and the skewness of dataset on non-i.i.d.

devices is represented by ρ. For example, σ = 0.2, ρ = 2 means that σ|K| = 10 devices are

equipped with i.i.d. dataset, where non-i.i.d. dataset lay on the rest (1− σ)|K| = 40 devices,

and the data samples on which are evenly belong to 2 labels. As such, a small σ, ρ indicates

a higher data heterogeneity.

4.4.1 Performance of Optimal Aggregation

In this part, we conduct an experiment to illustrate the performance of the proposed

Optimal Aggregation algorithm. Particularly, we adopt the CNN-M model on the MNIST

dataset where the data heterogeneity is set to be σ = 0.5, ρ = 1. In each global round,
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we randomly select |S| = 10 devices while guaranteeing the participating devices include

half i.i.d. devices and half non-i.i.d. devices. To avoid the randomness of device selection,

the participating devices in each round are kept the same for FedAvg [5] and the proposed

Optimal Aggregation algorithm.

As shown in the upper part of Fig. 4.1, the proposed Optimal Aggregation algorithm

can achieve lower training loss than FedAvg. When the global model is not robust in the

several initial rounds, the local updates are more diverse due to the data heterogeneity; thus,

excluding adverse local updates is more effective. We count the accumulated times that each

device is selected, labeled by the procedure Check expectation (line 7 in Algorithm

2), and finally excluded by the procedure Check loss (line 14 in Algorithm 2). As we

can see from the bottom part of Fig. 4.1, i) the i.i.d devices (i.e., with index “0”, · · · , “24”)

are never been excluded, yet some of the non-i.i.d devices (e.g.,“26”, “27”, “34”, etc.) have

been excluded for many times. ii) Almost all non-i.i.d. devices were labeled at least one time,

which illustrates the effectiveness of Optimal Aggregation in identifying the devices with

the skewed dataset.

4.4.2 Data Heterogeneity

In this part, we use different combinations of σ and ρ to investigate the performance of

the proposed FedPNS scheme in the presence of different data heterogeneity. Through all

experiments, α and β are chosen to be 2 and 0.7, respectively.

MLR Model with Synthetic Data We follow the description in Section 4.4 to generate

synthetic data samples. The ratio of i.i.d. devices is set to be σ = 0.2, 0.3, and 0.5 with

ϱ = 0.5 and 1. For each device k, the number of data samples |Dk| = 1000, and the number

of epochs for local training is E = 20. In Fig. 4.2, we study how data heterogeneity affects

model convergence using MLR model and synthetic dataset. As we can see from Fig. 4.2, as
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Figure 4.2: Effect of data heterogeneity on convergence. (1) Top row: we show the training
loss on the synthetic dataset whose data heterogeneity decreases from left to right (with a
fixed σ or ϱ). (1) Bottom row: we show the corresponding test accuracy.

the data heterogeneity increases, i.e., σ = 0.5, 0.3 and 0.2 with fixed ϱ = 1 or 0.5, FedAvg

slows to converge (i.e., higher training loss) with a decreasing test accuracy in the meantime.

FedPNS achieves a lower training loss and higher test accuracy, compared with FedAvg in all

data setting.

MLR, CNN-M Model for MNIST

As we can tell from Fig. 4.3, FedPNS converges faster and achieves a higher test accuracy,

compared with FedAvg for both MLR and CNN model regardless of different data heterogeneity.

FedPNS achieves better improvement when the CNN model is adopted, compared with the

scenario when the MLR model is utilized, which is attributed to the limited learning capability

of MLR. In addition, it is observable that as the data becomes more heterogeneous, the

performance enhancement is enlarged (i.e., α decreases from 0.5 to 0.2 for a given β, or β

changes from 2 to 1 for a given α). When the number of i.i.d. devices is limited and the non-

i.i.d devices are equipped with highly skewed dataset (e.g., σ = 0.2, ρ = 1 and σ = 0.3, ρ = 1),

FedPNS gains remarkable performance improvement, which verifies the effectiveness of FedPNS
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in identifying and selecting the devices that contribute global model better. For the scenario

with the lowest data heterogeneity (i.e., σ = 0.5, ρ = 2), the performance gap between FedPNS

and FedAvg is not obvious. This is because the impact of the non-i.i.d. devices on the

convergence is reduced when a large number of i.i.d. devices can be selected.
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Figure 4.3: Test accuracy over communcation rounds of FedPNS and FedAvg with different
data heterogeneity. Upper and lower subplots correspond to training performance when the
MLR model and CNN-M model are adopted for MNIST, respectively. A smaller σ, ρ indicates
a higher data heterogeneity.

CNN-C Model for CIFAR-10

For the more complex three-channel image classification task, the number of local epochs

is set to be E = 5. As we can see from Fig. 4.4, compared with FedAvg, FedPNS converges

faster and leads to a higher test accuracy, especially for the high data heterogeneity scenario

(i.e., σ = 0.2 and 0.3, ρ = 1). The performance improvement of FedPNS is not obvious when

σ = 0.2, ρ = 2; this is because the small number of i.i.d. devices with less heterogeneous data

samples on non-i.i.d. devices makes FedPNS hard to distinguish the device contribution.
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Figure 4.4: Test accuracy over communcation rounds of FedPNS and FedAvg with different
data heterogeneity. CNN-C model is adopted for CIFAR-10.

4.4.3 Choosing α and β

The choice of α and β gives an impact on FedPNS. As discussed in Chapter 4.2.3, a large

value of α can help increase the model convergence rate by aggressively adjusting the device

probability. On the other hand, a large value of α also makes device selection sensitive to

the identification mistake, which may negatively impact the convergence. A similar effect

is achieved by β, which keeps the rate of probability change in a range [β, 1]. We studied

the effect of different α and β via heuristically choosing α ∈ Z+, β ∈ [0, 1] in ascending order.

From the top row of Fig. 4.5, for a fixed β = 0.7, increasing α from 1 to 2 boosts performance.

However, keep increasing α does not consistently embrace performance gain, this is because

FedPNS becomes more sensitive to identification mistakes, which may prevent i.i.d devices

from being selected in the subsequent rounds. Similarly, from the bottom plot of Fig. 4.5, for

a fixed α = 2, increasing β from 0.5 to 0.7 promotes model performance. However, further

increasing β to 0.8 leads to a degraded performance. Empirically, we find α = 2, β = 0.7 that

balances the tradeoff and leads to the best performance.

4.4.4 Other Comparison

In this section, we take one experimental case as an example to demonstrate the bounded

norm of local gradient ∥∇Fk(wt)∥, which is related to the data distribution on each device.

Besides, we compare the proposed FedPNS with another device selection scheme BN2 [46],
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Figure 4.5: Effect of adopting different α and β. We heuristically choosing α ∈ Z+, β ∈ [0, 1]
in ascending order. The top row and bottom row correspond to the performance with varied
α and β, respectively. CNN-M on MNIST is adopted.

which chooses the devices with higher ∥∇Fk(wt)∥ for aggregation. Specifically, in each global

round, BN2 first randomly selects |M| devices for local training. After that, the participating

devices send their gradient norm ∥∇Fk(wt)∥, k ∈M to the server. The server chooses the

first |St| local updates for model aggregation by sorting ∥∇Fk(wt)∥, k ∈ M in descending

order.

In this experiment, |M| is set to be 20. We track the norm of the gradient for each

participating device k ∈M statistically in each global round. As we can see from Fig. 4.6,

the averaged gradient norm from i.i.d. devices is smaller than that from non-i.i.d. devices.

This is because the data distribution on i.i.d. devices is more similar to the population

distribution that is defined over all devices. As such, preferentially scheduling the devices
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with a higher norm of gradient would slow the convergence, as shown in the bottom of Fig.

4.6.
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Figure 4.6: Device selection design with different importance indicators. FedPNS chooses
devices by measuring the data distribution on local devices, while BN2 selects devices according
to the norm of gradient. (1) Top plot: we track the averaged gradient norm of device k ∈M
with different data distribution, where each device is selected from K randomly. (2) Bottom
plot: we compare the test accuracy for different device selection designs. CNN-M on MNIST
is adopted with σ = 0.5, ρ = 1.

4.5 Complete Proof

4.5.1 Proof of Lemma 1

From the L-smooth of F (w) and applying Taylor expansion, we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+ L

2 ∥w
t+1 −wt∥2. (4.6)

• Bounding ∥wt+1 −wt∥2
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By the definition of the global aggregation and local SGD, we have

∥wt+1 −wt∥2 = (ES
[
∥wt+1 −wt∥

]
)2 = η2(ES

[
∥∇Fk(wt)∥

]
)2 1
≤ η2ES

[
∥∇Fk(wt)∥2

]
≤ η2∥∇F (wt)∥2ϕ2, (4.7)

where inequality 1 holds because of Cauchy-Schwarz inequality, and the last inequality is due

to the bounded dissimilarity assumption.

• Bounding ⟨∇F (wt),wt+1 −wt⟩

Again, by the definition of the global aggregation and SGD optimization, we have

⟨∇F (wt)),wt+1 −wt)⟩ = −ηES
[
⟨∇F (wt),∇Fk(wt)⟩

]
. (4.8)

Plugging (4.7) and (4.8) into (4.6), we obtain

F (wt+1)− F (wt) ≤ −ηES
[
⟨∇F (wt),∇Fk(wt)⟩

]
+ Lη2

2 ∥∇F (wt)∥2ϕ2. (4.9)

4.5.2 Proof of Theorem 4

At any global round t, the weight divergence between the model wt with partial device

participation and centralized model vt is bounded as follows

ES∥wt − vt∥ = ES∥wt − w̃t + w̃t − vt∥ ≤ ES∥wt − w̃t∥+ ∥w̃t − vt∥. (4.10)

• Bounding ∥w̃t − vt∥

In this part, to facilitate analysis, we introduce the index of local update, e.g., the models

w̃t and vt are represented by w̃tτ and vtτ since τ times of local SGD are applied in each

global round.
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Based on the definition of w̃t and vt, we have ∥w̃t − vt∥ = ∥w̃tτ − vtτ∥ and

∥w̃tτ − vtτ∥ =∥
|K|∑
k=1

|Di|∑|K|
k=1 |Di|

wtτ
k − vtτ∥

1=∥
|K|∑
k=1

1
|K|

(wtτ−1
k − η∇Fk(wtτ−1

k ))− vtτ−1 + η∇F (vtτ−1)∥

2
≤∥

|K|∑
k=1

1
|K|

wtτ−1
k − vtτ−1∥+ η∥

|K|∑
k=1

1
|K|

C∑
c=1

qk(y = c)

(∇Exk|yk=c
[
loglc(wtτ−1

k ,xk, yk)
]
−∇Ex∪|y∪=c

[
loglc(vtτ−1,x∪, y∪)

]
)∥

3=∥
|K|∑
k=1

1
|K|

wtτ−1
k − vtτ−1∥+ η∥

|K|∑
k=1

1
|K|

(∇Fk(wtτ−1
k )−∇Fk(vtτ−1))∥

4
≤

|K|∑
k=1

1
|K|

(1 + ηL)∥wtτ−1
k − vtτ−1∥, (4.11)

where equality 1 holds by the updating rule of SGD, and by that, all devices have equal data

size. Inequality 2 holds by applying triangle inequality and by the observation that for each

class, the data distribution over all devices is the same as the distribution over the whole

data samples, i.e., j ∈ [C], q(y∪ = c) = ∑|K|
k=1

1
|K|qk(yk = c). Equality 3 holds by (2.1), (2.3)

and (4.4). and inequality 4 holds by Assumption 2 that the local loss function is L-smooth.
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For device k ∈ K, ∥wtτ−1
k − vtτ−1∥ is bounded as

∥wtτ−1
k − vtτ−1∥

=∥wtτ−2
k − η∇Fk(wtτ−2

k )− vtτ−2 + η∇F (vtτ−2)∥

≤∥wtτ−2
k − vtτ−2∥+ η∥

C∑
c=1

qk(yk = c)∇Exk|yk=c
[
loglc(wtτ−2

k ,xk, yk)
]

−
C∑
c=1

q(y∪ = c)∇Ex∪|y∪=c
[
loglc(vtτ−2,x∪, y∪)

]
∥

5
≤∥wtτ−2

k − vtτ−2∥+ η∥
C∑
c=1

qk(yk = c)

(∇Exk|yk=c
[
loglc(wtτ−2

k ,xk, yk)
]
−∇Ex∪|y∪=c

[
loglc(vtτ−2,x∪, y∪)

]
)∥

+ η∥
C∑
c=1

(qk(yk = c)− q(y∪ = c))∇Ex∪|y∪=c
[
loglc(vtτ−2,x∪, y∪)

]
∥

6=∥wtτ−2
k − vtτ−2∥+ η∥∇Fk(wtτ−2

k )−∇Fk(vtτ−2)∥

+ η∥
C∑
c=1

(qk(yk = c)− q(y∪ = c))∇Ex∪|y∪=c
[
loglc(vtτ−2,x∪, y∪)

]
∥

7
≤(1 + ηL)∥wtτ−2

k − vtτ−2∥+ ηgmax(vtτ−2)
C∑
c=1
∥(qk(yk = c)− q(y∪ = c))∥, (4.12)

where inequality 5 holds by introducing a term ∑C
c=1 qk(yk = c)∇Ex∪|y∪=c [loglc(vtτ−2,x∪, y∪)]

(with add and minus) and applying triangle inequality. Equality 6 holds by (2.1), (2.3) and

(4.4). Inequality 7 holds by the L-smoothness in Assumption 2 and by defining gmax(vtτ−2) =

maxCc=1∥∇Ex∪|y∪=c [loglc(vtτ−2,x∪, y∪)] ∥.

Based on (4.12), by mathematical induction and setting ϖ = 1 + ηL, we have

∥wtτ−1
k − vtτ−1∥

≤ ϖ∥wtτ−2
k − vtτ−2∥+ η

C∑
c=1
∥(qk(yk = c)− q(y∪ = c))∥gmax(vtτ−2)

≤ ϖ2∥wtτ−3
k − vtτ−3∥+ η

C∑
c=1
∥(qk(yk = c)− q(y∪ = c))∥(gmax(vtτ−2) +ϖgmax(vtτ−3))
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...

≤ ϖτ−1∥w(t−1)τ
k − v(t−1)τ∥+ η

C∑
c=1
∥(qk(yk = c)− q(y∪ = c))∥(

τ−2∑
r=0

ϖkgmax(vtτ−2−r)). (4.13)

Substituting (4.13) to (4.11), we obtain

∥w̃t − vt∥ ≤
|K|∑
K=1

1
|K|

(ϖτ∥w(t−1)τ
k − v(t−1)τ∥

+ η
C∑
c=1
∥(qk(yk = c)− q(y∪ = c))∥(

τ−1∑
r=1

ϖrgmax(vtτ−1−r))). (4.14)

Since vt is “synchronized” with w̃t at the beginning of each global round, we ignore the

first item of the right hand side of (4.14), which is the weight divergence accumulated from

the previous round. Thus, the weight divergence ∥w̃t − vt∥ between two consecutive global

round is represented as

∥w̃t − vt∥ ≤ η
|K|∑
k=1

1
|K|

qdifk (
τ−1∑
r=1

akgmax(vtτ−1−r), (4.15)

where qdifk = ∑C
c=1 ∥(qk(yk = c)− q(y∪ = c))∥.

• Bounding ∥wt−w̃t∥: We follow the identical sampling distribution (i.e., {p1, p2, · · · , p|K|})

to select |S| devices from |K| devices and let S = {k1, · · · , k|S|} denote the set of indices of

chosen devices. The global model in FL with partial device participation is represented as

wt = 1
|S|
∑|S|
k=1 wt

kk
. Taking expectation over S, we have

ES∥wt − w̃t∥ = ES
1
|S|

|S|∑
k=1
∥wt

kk
− w̃t∥ =

|K|∑
k=1

pk∥wt
k − w̃t∥, (4.16)

where the last equality in (4.16) is obtained by the following the observation ES
∑
k∈S xk =

ES
∑|S|
k=1 xkk

= |S|ESxkk
= |S|∑|K|

k=1 pkxk given S = {xk1 , · · · , xk|S|} ⊂ K, and by replacing

xk with wt
k in the above observation.
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We consider the model parameter in the previous global round wt−1
k , which is identical for

any k ∈ K. As such, we have ∑|K|
k=1 pk(wt

k −wt−1) = w̃t − w̃t−1. Thus, the above equation

can be bounded as

|K|∑
k=1

pk∥wt
k − w̃t∥ =

|K|∑
k=1

pk∥(wt
k − w̃t−1︸ ︷︷ ︸

X

)− (w̃t − w̃t−1)∥

≤
|K|∑
k=1

pk∥wt
k − w̃t−1∥, (4.17)

where the last equality holds because E∥X − E[X]∥ ≤ E∥X∥.

Substituting (4.17) into (4.16), we have,

ES∥wt − w̃t∥ ≤
|K|∑
k=1

pk∥wt
k − w̃t−1∥

≤
|K|∑
k=1

pk∥wt
k −wt−1

k ∥

≤
|K|∑
k=1

pk∥η∇Fk(wt−1)∥

≤ η
|K|∑
k=1

pkGk, (4.18)

where the last inequality results from Assumption 3.

Finally, Theorem 3 is proved by substituting (4.18) and (4.15) into (4.10).

4.6 Summary

In this chapter, we have presented our design of FedPNS algorithm, a probabilistic node

selection strategy that can preferentially select nodes to boost model convergence of FL with

non-i.i.d. datasets. FedPNS adjusts the probability for each node to be selected in each round

based on the result of the proposed Optimal Aggregation algorithm, which is able to find
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out the optimal subset of local updates from participating nodes and excludes the adverse

local updates for a better model aggregation, by measuring the relationship between the local

gradient and the global gradient from participating nodes. The convergence rate improvement

of the FedPNS design over FedAvg is analyzed theoretically. Finally, experimental results on

different tasks, models, and datasets have shown that FL training with FedPNS accelerates

model convergence and leads to higher test accuracy, as compared to FedAvg.
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Chapter 5

Mitigating Heterogeneous

Computation with Partial Model

Training

5.1 Overview

In this chapter, we try to answer the following questions: given limited computation on local

devices, which part of the training model should be updated or protected in FL? Moreover,

how does the server generate and assign sub-models to computation-heterogeneous devices?

Existing partial model training designs [23, 30, 75–77] encounter covariant shift problems

because the partial model is constructed by statically downsampling in each layer. As a

result, different sub-models can only be trained on specific devices that match the resource

constraint, updating different parts of the global model with different data distributions.

This drawback would degrade the training performance, especially in data heterogeneous

FL scenarios. Since the expectation of the output feature in the partial model differs from

that in the full model, one must add batch normalization layers or manually scale the output
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feature. Authors in [85] proposed to handle the problem with a rolling window where different

sub-models (in each layer) can be updated more evenly. Even though sub-model generation

is updated in each global round, multiple local updates during consecutive rounds might

cause skewness in model learning. More importantly, all the works mentioned above discard

a specific ratio of weight (the connection between neurons in layers) in every layer to generate

a sub-model, which might not be necessary for model training in FL since features in shallow

layers are less important and can be shared among devices while unique features of devices

are revealed by keeping (at least) the classifier updated.

As such, we propose a new method, Federated Partial Model Training (FedPMT), to generate

sub-models in a layerwise way for computationally heterogeneous devices to reduce the FL

completion time. Different from existing PMT-based methods, which generate sub-models by

preserving a subset of neurons in each layer [30, 31, 75–77, 84, 85, 94, 95], FedPMT constructs

sub-models from the back-propagation (BP) perspective. For resource-constrained devices,

the computation burden is reduced by restricting gradient information from back-propagating

to the shallow layers. Meanwhile, the most important layers (deep layers) are updated by

back-propagation, and the local information (from each participant with unique data samples)

is preserved in the partial model training process. We list out related works and a detailed

comparison of the proposed design and existing model-homogeneous and model-heterogeneous

FL methods in Table 5.1.

To the best of our knowledge, this is the first work considering layerwise model update

to handle the system heterogeneity problem in FL10. The main advantage of our proposed

FedPMT is that all participants prioritize the most crucial parts of the global model (i.e., deep

layers) and ensure that local training achieves the purpose of data augmentation, as pursued

in FL. Meanwhile, avoiding removing neurons in deep layers guarantees a relatively large
10It is worth mentioning that a similar concept, sparsified BP [96], where only a small amount of parameters

are updated in BP, is applied to reduce the over-fitting problem. Our work is orthogonal to [96] from both
objective and implementation perspectives.
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Table 5.1: Comparisons of model-homogeneous and model-heterogeneous FL design in the
existing literature and the proposed FedPMT

FL Methods
Model

Heterogeneity

Aggregation

Scheme

Comp. / Comm.

Heterogeneity

Sub-model Generation /

Auxiliary Data

Convergence

Optimization

FedAvg [5]
No - - / No - / No

SCAFFOLD [29]

Knowledge

Transfer

FedDF [80]

Yes
Knowledge

Distillation
-

- / Unlabeled

COMET [81] - / Unlabeled

FedGKT [82] - / No

FedGen [83] - / No (Generator)

Model

Prunning

FedMP [94]
Yes -

✓ / ✓ Random / No

PruneFL [95] ✓ / ✓ Static / No

Partial Model

Training

Federated Dropout [31]

Yes
Sub-model

Training

✓ / ✓ Random / No

HeteroFL [30] ✓ / - Fixed / No

SlimFL [23] - / ✓ Fixed / No

FjORD [84] ✓ / ✓ Ordered / No

FedRolex [85] ✓ / ✓ Rotated / No

FedPMT (Ours Approach) ✓ / ✓ Layerwise / No

model capacity. Our main contributions in this work are as follows.

• We identify the prospect of model-heterogeneous FL and propose a layerwise partial

model training strategy, FedPMT, for resource-constrained FL systems. The proposed

FedPMT accommodates heterogeneous computation over the FL system by counteracting

back-propagation cost when updating the model, a.k.a. layerwise. Without invok-

ing further local computation overhead, FedPMT is an easy-to-implement framework

fully compatible with existing FL systems or secure aggregation protocols for privacy

enhancement.

• We analyze the convergence property of the proposed design. FedPMT converges to

the global optimum at a rate of O(1/T ) for strongly convex and smooth function in

data heterogeneous scenarios, which is similar to the FedAvg cases with no resource
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constraints. However, given heterogeneous computational capabilities on devices,

FedPMT has a shorter task completion time.

• We empirically evaluate the performance of FedPMT via extensive experiments using

the synthetic dataset and real datasets with different learning objectives. By analyzing

the computation for various heterogeneous settings, our results demonstrate that the

proposed design outperforms model-homogeneous (FedAvg) and model-heterogeneous

(FedDrop) benchmarks regarding task completion time and training accuracy, respec-

tively.

Our proposed layerwise partial model training strategy inaugurates a new direction of

handling computation heterogeneity in FL due to its effectiveness, simplicity, and scalability.

The rest of this chapter is organized as follows. Section 5.2 presents a computation

model in FL. Section 5.3 explains how to split the learning model and achieve the layer-wise

partial model training in FL. Section 5.4 analyzes the convergence property of the proposed

partial model training design and discusses the insights gained from the theoretical result.

Experimental results and related complete proof are presented in Section 5.5 and Section 5.6.

Finally, Section 5.7 summarizes this chapter.

5.2 System Heterogeneity and Computation Model

Several works have demonstrated the effectiveness of FedAvg from both empirical and

theoretical perspectives in various settings [20, 29, 97]. One needs to notice that in the

system heterogeneous FL, the assumption that every participating device can timely train

the designated model and/or transmit the updated model back to the server may not always

hold true. For example, the network identities in heterogeneous networks can be Internet of

Thing (IoT) devices, PCs, and mobile devices, which have different computational and/or
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communication capabilities. Devices may not be able to train a large model due to their

energy consumption on this task, or their CPU cycles are too small to finish the task on time,

causing a long delay or straggler effect [84, 98]. Therefore, it is not trivial to design an FL

system from the time consumption perspective and consider the system heterogeneity. In

what follows, we introduce a computation model in general FL.

We denote the number of CPU cycles for device k to execute one sample of data by ck,

which is considered a priori information and can be measured offline. Suppose that all samples

zk,s ∈ Dk have the same size (e.g., the number of pixels in images), the number of CPU cycles

required by device k for each time of local training (i.e., one global round) is ck · |Dk| · E,

where E is the number of local training epoch. Furthermore, the computation time for each

global round is derived as T tcmp = ck·|Dk|·E
κk

, where κk is the CPU cycle frequency of device

k, which is fixed for one device and varies for different devices. In this work, the system

heterogeneity is reflected by κk. This is because ck is a constant given a training model w, so

devices with a higher value of κk signify a larger computational capacity, enabling them to

complete the local training process faster. In a typical FL design, all devices are rehearsed

with the same number of SGD steps (i.e., τ ). Therefore, devices with small computational

capability would spend a long time to finish the local training, resulting in the straggler

effect [84, 98]. In this work, we do not consider the convergence improvement by assigning

adaptive τ , which is determined by |Dk|, E, or SGD batch-size as in [21, 99], but focus on

delivering different partial models to different participants to mitigate the impact of system

heterogeneity. The time consumption for participating devices in each global round t is

bounded as max{ ck·|Dk|·E
κk
}, k ∈ S.
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Figure 5.1: Illustration of different local training models of the proposed FedPMT for four
layers of fully connected neural networks (i.e., |L| = 4) with model width I = {1, 2, 3},
where |I| = 3 < |L| = 4. The leftmost plot represents the model with full model width
|I| = 3. The partial model training process with mask Ξi, i ∈ I is shown by dotted lines
and arrow lines in blue, i.e., weights with arrow lines in blue are updated using BP. The
weights with dotted lines are not updated by BP, where only the forward process is involved.
Function fk, k ∈ Si, i ∈ I is given to represent Ξi using Υl, l ∈ L. In comparison, FedDrop
removes neurons in hidden layers with probabilities (to accommodate different computational
capabilities on devices) at random. For example, the model after dropout (with a dropout
rate of 0.25) is shown in the rightmost plot.

5.3 Layerwise-based Partial Model Training

We consider an FL scenario where participating devices have heterogeneous computing

capabilities. We adopt the concept of partial model training to accommodate the contribution

of devices with heterogeneous computing capabilities. To better compromise the system

heterogeneity, the server provides a variety of computing options reflected by model width

I = {1, 2, · · · , |I|} to those devices for motivating participation and improving the global

model convergence. Specifically, at any global round t = 1, 2, · · · , T , each participating

device can choose one of the model widths provided in I for its local model training process

according to its computing capability.
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Without loss of generality, in the t-th global round, we use |I| to indicate the full model

width, use Ξi, i ∈ {1, 2, · · · , |I|} as the mask to generate the local model in order to do partial

training and use non-joint sets Si, i ∈ {1, 2, · · · , |I|} to represent the corresponding sets (with

the same model width) that devices belong to. As such, device k ∈ ∪Si, i ∈ I \ {|I|} can

generate a partial model (based on its computing capability) as wt
k = wt ⊙ Ξi for further

processing, and it is clear that wt
k = wt ⊙ Ξ|I| = wt holds for devices with full model width,

i.e., k ∈ S|I|. We define ⊙ operated on model wt to represent the partial model generation

process, which is illustrated as

wt
k =


wt ⊙ Ξi k ∈ Si, i ∈ I \ {|I|}

wt ⊙ Ξi = wt k ∈ Si, i = |I|
. (5.1)

In our proposed FedPMT, we achieve partial model training from the perspective of Back-

Propagation (BP)11. Particularly, all participating devices k ∈ ∪Si, i ∈ I share the same

forward process, which calculates the loss function given current model wt and its data

samples zk ∈ Dk. Differently, devices without full model width, i.e., k ∈ ∪Si, i ∈ I \ |I| will

not update all the parameters by BP, instead only the parts where BP is involved. This is

achieved by restricting gradient information from back-propagating to the shallow layers.

We introduce Υl
k, l ∈ L = {1, 2, · · · , |L|} to indicate whether the l-th layer of the learning

model on device k is involved in the BP process, where |L| is the total number of layers in

the model. Therefore, for each device k ∈ Si with mask Ξi, a relationship between Ξi and

Υl
k is generated Ξi = fk(

∑
l∈L Υl

k), i ∈ I to represent the involved layers in BP, where Υl
k is

11Our proposed scheme is different from existing works[75–77], which split the training model into different
sub-models with overlap [75, 76] or without overlap [77]. However, these works mentioned above split the
network from the neurons’ perspective (by only including partial parameters of each layer of the training
model, as seen in Fig. 5.1.). Our work splits the training model from the layers’ perspective. Partial model
training means that devices with model width i ∈ I \ {|I|} exclusively update part of layers of this model,
from the back to the front. As with the traditional FL design, all the participating devices update the
classifier, i.e., the last layer of the model, which is helpful to alleviate the classification bias that is identified
as the culprit of FL with heterogeneous data [100].
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a vector with binary values. The l-th element of Υl
k is 1, indicating that the l-th layer of

device k is involved in BP; otherwise, all elements in Υl
k are 0. fk(

∑
l∈L Υl

k) is regarded as a

mapping function with binary coefficients that shows which layer’s gradient is updated12.

In what follows, notation fk(
∑
l∈L Υl

k) is simplified as fk. Similar to the vanilla federated

optimization [5], each device minimizes its empirical risk as shown in (2.2) by running τ steps

of (mini-batch) SGD to update local parameters initialized as wt. For device k, the local

model training is formally expressed as

wt+1
k = wt − ηt∇Fk(wt, ξk) ◦ fk︸ ︷︷ ︸

˜∇Fk(wt
k
,ξk)

, (5.3)

where ηt is the learning rate, ξk is the mini-batch samples, and ∇̃Fk(wt
k, ξk) is the actual

gradient for model update in device k, which might be the partial or full gradient depending

on the binary values of fk. We use ◦ to represent the layer-wise multiplication between a

vector a of length |L| and gradient vector b with |L| blocks/layers, Below shows a general

example for layer-wise multiplication: a = [0, 1, 2], b = [2, 2, 2; 1, 1; 3, 3, 3, 3]. In the vector b,

the semicolon ‘;’ serves as a delimiter to distinguish between model parameters across different

layers. We have a ◦ b = [0, 0, 0; 1, 1; 6, 6, 6, 6]. Note that the length of vector a equals

the number of layers in gradient vector b. As such, by introducing the mask, devices with

model width i ∈ I \ {|I|} will not update the model weight of front layers, thus alleviating

the computational burden (e.g., for partial derivative and matrix multiplication).

After the local training, the server collects the model updates ∇̃Fk(wt
k, ξk), k ∈ S to

12Suppose that a three-layer model w is divided into three different widths, i.e., I = {1, 2, 3}. With i = 3
being the full model, i.e., w⊙ Ξ3 = w, devices within set S3 will update all layers using the BP process. In
this case, fk is written as [1, 1, 1] and Υ1

k = [1, 0, 0], Υ2
k = [0, 1, 0], Υ3

k = [0, 0, 1] (we remove the subscription
k for generalization). Similarly, for those devices k ∈ S1 with model width Ξ1, fk is viewed as [0, 0, 1]
(Υ1

k = [0, 0, 0], Υ2
k = [0, 0, 0], Υ3

k = [0, 0, 1]), which means that only the last layer is involved in the BP process,
and the first two layers will not be updated by BP. In more general cases where |I| is less than the total
number of model layers (e.g., |I| = 3 ≤ |L| = 4), fk can be generated similarly, e.g., fk = [0, 1, 1, 1] and
fk = [1, 1, 1, 1]. Refer to Fig. 5.1 for a detailed illustration.
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wt+1 (a)= wt − ηt
∑
k∈S

Ak ◦ ∇̃Fk(wt
k, ξk)

(b)= wt − ηt

 1
|S|I||

∑
k∈S|I|

∇Fk(wt, ξk) ◦Υ1
k + 1
|S|I| ∪ S|I|−1|

∑
k∈Si|I|∪S|I|−1

∇Fk(wt, ξk) ◦Υ2
k

+ · · ·+ 1
| ∪ Si,i∈I |

∑
k∈∪Si,i∈I

∇Fk(wt, ξk) ◦Υ|I|
k


= wt − ηt

∑
i∈I

1
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∇Fk(wt, ξk) ◦Υ|I|−i+1
k︸ ︷︷ ︸

∇F (wt)

, (5.4)

cast the global model, as shown in (5.4), where Ak = [a1, a2, · · · , a|L|] and al = fk[l]∑
k∈S fk[l]

for l = 1, 2, · · · , |L| and k ∈ S, where fk[l] is the l-th element of fk. For simplicity of

representation, we consider the size of local datasets on local devices to be the same. Equation

(5.4) gives two different ways to represent global model aggregation, i.e., from the device’s

perspective (equation (a)) or the layer-wise perspective (equation (b)). As shown in (a),

different from weighing local models with a single scalar [5, 14], a weighting vector Ak whose

values correspond to the specific layer-wise weight in aggregation is allocated to local models

since devices may provide a partially updated model13. For example, Ak[2] indicates the

weight for aggregating the model parameters of the 2nd layer of device k. ◦ represents the

layer-wise multiplication calculation between weighting vector Ak and gradient ∇̃Fk(wt
k, ξk).

Procedures of the proposed FedPMT algorithm are summarized in Algorithm 4. Two

options are provided, as seen in Algorithm 4, where the mask for partial model training is

generated either by the server or by local devices. If we choose option I, where the server

generates the mask, then each device should report its computation level to the server, similar

to [45]. Otherwise, option II can be adopted, in which each device determines mask f that
13The values in Ak indicate that devices can provide partial gradient/model for aggregation, and parameters

of the rest parts of the partial model are not counted in aggregation because no gradient update is done for
those parameters.
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Algorithm 4 Federated Learning with Partial Model Training
1: Input: device set K, step size ηt, model initialization w1, number of global round T ,

number of local steps τ , κ if Option I is chosen
2: for t = 1, . . . , T do
3: Server: St ← random subset of K
4: Option I (server initiates model splitting):
5: send wt and fk to device k ∈ Si
6: Option II (device initiates model splitting):
7: send wt and different masks Ξi, i ∈ I to device k ∈ S
8: for local device k ∈ St in parallel do
9: Option I (server initiates model splitting):

10: LocalUpdate(wt, fk, ηt, τ)
11: Option II (device generates partial model):
12: choosing appropriate fk = Ξi based on computational capability
13: end for
14: Server: model aggregated by (5.4)
15: end for
16: return

LocalUpdate(wt, fk, ηt, τ) at the k-th device
17: for step = 1, . . . , τ do
18: (mini-batch) stochastic gradient descent by (5.3)
19: end for
20: return ∇̃Fk(wt

k, ξk)

matches its computation level. In this case, only marginal extra information f is added to

the uplink model transmission.

5.4 Convergence Analysis

In this section, we analyze the convergence property of the proposed partial model training

with the local objective satisfying the strongly convex and smooth assumptions and compare it

to the convergence rate of FedAvg. For the ease of theoretical analysis, we consider |I| = |L|

and scenarios with |I| ≤ |L| are verified in Section 5.5.3. To facilitate the convergence

analysis, we introduce assumption 6 on SGD optimization, which is commonly adopted in the

literature [20, 22, 23]. Then, we give the derived lemmas and theorem for the convergence
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rate of FedPMT.

Assumption 6. Bounded local gradient variance. The variance of local gradient

∇Fk(wt
k, ξk) is bounded,

i.e., E [∥∇Fk(wt
k, ξk)−∇Fk(wt

k)∥2] ≤ δ2
k, with ∇Fk(wt

k) denoting the ground-truth gradient

over device k given Dk.

Similar to [21], we define δ2 = 1
|S|
∑
k∈S δ

2
k to measure the overall data heterogeneity of all

devices in federated optimization.

Proposition 1. Given local loss satisfying µ-strong convexity, the following inequality can be

derived, i.e., ⟨wt
k −w∗, Ak ◦ Fk(wt

k)⟩ ≥ ε
|S| ·

(
Fk(wt

k)− Fk(w∗) + µ
2∥w

t
k −w∗∥2

)
for devices

k ∈ S in FedPMT, where ε ∈ [0, 1] indicates the information loss due to the partial model

update.

Proof. Given the loss function satisfying Assumption 1, ⟨wt
k −w∗,∇Fk(wt

k)⟩ ≥ Fk(wt
k) −

Fk(w∗) + µ
2∥w

t
k −w∗∥2, Proposition 1 is derived based on the fact that all parts (reflected by

each layer of gradient ∇Fk(wt
k)) of the model contribute to the local objective minimization

(i.e., the right-hand side of above inequality), and removing part of the model information

results in the slowness of the minimization process.

We assume the most information decrement on devices with partial model update is mea-

sured by 1−ε, and whose bound, i.e.,
(
Fk(wt

k)− Fk(w∗) + µ
2∥w

t
k −w∗∥2

)
is lowered by a con-

stant factor ε in such cases. The rationality behind the reduced bound related to the constant

factor ε reveals that these devices can retain at least the following amount of information ε ·(
Fk(wt

k)− Fk(w∗) + µ
2∥w

t
k −w∗∥2

)
, though they update the model with the least effort due to

the computation constraint. Since devices k ∈ S1 only update the last layer of the model, thus

lose the most information regarding its local objective minimization process. Consequently,

with weighting vector Ak, k ∈ S1 for aggregation being [0, · · · , 1
|S| ], the following inequality is
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achieved, i.e., ⟨wt
k −w∗, Ak ◦ ∇Fk(wt

k)⟩ ≥ ε
|S|

(
Fk(wt

k)− Fk(w∗) + µ
2∥w

t
k −w∗∥2

)
,∀k ∈ S1.

For all the other devices k ∈ ∪Si,i=2,··· ,|I| that update more layers in partial model training and

thus can retain more information, the above inequality is fulfilled. Therefore, the inequality is

achieved for all devices in the partial model training scheme, i.e., ⟨wt
k−w∗, Ak ◦∇Fk(wt

k)⟩ ≥
ε

|S|

(
Fk(wt

k)− Fk(w∗) + µ
2∥w

t
k −w∗∥2

)
,∀k ∈ S.

Lemma 2. (Bounded variance for global gradient). From Assumption 6, the variance

of global gradient is bounded as E
[
∥∇F (wt)−∇F̄ (wt)∥2

]
≤ 2|I|δ2ψ, where ∇F (wt) and

∇F̄ (wt) represent the global gradient surrogated by ∇Fk(wt
k, ξk) and ∇Fk(wt

k), respectively,

according to the aggregation method (5.4), ψ = ∑
i∈I

1∑
pj,j=i,··· ,|I|

and pj in the denominator

is defined as the ratio between the number of devices in Sj and the number of participated

devices in a global round, i.e., |Sj |
|S| .

Lemma 3. (One round convergence). Under Assumptions 1, 2, 3, 6 and Proposition 1, the

divergence between the global model at the (t+1)-th global round and the optimal model satisfies

E [∥wt+1 −w∗∥2] ≤ (1−ηtµε)E [∥wt −w∗∥2]+η2
t (8(τ−1)2G2 +2Lη2

t (|I|ψ+ |S|+ε)Λ+2δ2ψ),

where L, µ, δ2, τ,G, ε are defined earlier and Λ = 1
|S|
∑
k∈S(F ∗ − F ∗

k ) measures the degree of

non-i.i.d. in federated optimization. F ∗ and F ∗
k denote the optima of the global loss and local

loss of device k, respectively.

We direct readers to Section 5.6.1 and 5.6.2 for the detailed proof Lemmas 2 and 3,

respectively. Based on Lemmas 2 and 3, the convergence rate of the proposed FedPMT is

shown in the following Theorem 5, which is proven in Section 5.6.3.

Theorem 5. Let Assumptions 1 - 3 and 6 hold and let L, µ, δk, τ, G be as defined above.

Choose the step size ηt = 2
µε(t+λ) , the convergence of federated learning with partial model

training satisfies

E
[
F (wT )− F (w∗)

]
≤ 1
T + λ

(
(λ+ 1)Γ1

2 + 2∆̃
µ2

)
, (5.5)

92



where λ > 0, ∆̃ = (8(τ − 1)2G2 + 2L(|I|ψ + |S|+ ε)Λ + 2δ2ψ)/ε2, and Γ1 = E [∥w1 −w∗∥2]

denotes the distance between the initial and optimal global models.

From Theorem 1, we observe that FedPMT has a convergence rate of O(1/T ), which

aligns with the convergence rate of FedAvg in [19, 101](refer to Section 5.5.3 for empirical

verification). The difference between FedPMT and FedAvg lies in problem-related constant ∆̃,

essentially caused by information loss in partial model training. In addition, the bound in

the right-hand side of (5.5) is related to model splitting (i.e., ψ), as analyzed in the following.

1) Given the initial global model w1, we have Γ1 = ∥w1 −w∗∥2 ≤ 4
µ2G

2 derived for a

µ-strongly convex global objective F [101]. Therefore, as shown in (5.5), the dominating term

is O
(

(L(|I|ψ+|S|+ε)Λ+δ2ψ+λG2+τ2G2)/ε2

Tµ2

)
, compared to the term O

(
LΛ+δ2+λG2+τ2G2

Tµ2

)
in FedAvg.

The results reveal that the loss gap between the global model wT and optimal model w∗ in

FedPMT is more significant. This is because only a subset of participating devices update the

whole model in local computation. Devices that update the partial model will lose information

and contribute less to the global objective minimization.

2) The loss gap in (5.5) is also related to the way to split the model, which determines

how much the devices with partial model training can contribute to the global objective

minimization. Notably, in order to shrink the loss gap between FedPMT and FedAvg, one needs

to reduce ψ, i.e., ∑i∈I
|I||S|∑

pj,j=i,··· ,|I|
, by enlarging the denominator of ψ. This demonstrates that

the gap can be reduced with more devices updating more layers (i.e., a larger ∑ pj,j=i,··· ,|I|).

On the contrary, if we assume devices k ∈ S \ S|I| have the computational capability to do

large computational tasks but they choose to do small tasks (e.g., updating the last layer

of the model), this type of model splitting results in a smaller ∑ pj,j=i,··· ,|I| and hence a

larger gap. This analysis indicates that the partial model design should fully excavate the

computation of the local devices in order to expedite the FL process.
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Even though FedPMT ends with a larger loss gap, with proper partial models being allocated

to resource-constrained devices, FedPMT achieves a better trade-off in terms of completion

time in FL.

5.5 Numerical Results

In this section, we implement FedPMT across various tasks with different learning models and

compare it with existing benchmarks FedAvg [5] and a Dropout-based partial model training

design, FedDrop [31]. In particular, we use a Fully Connected Neural Network (FCNN)14

and Convolutional Neural Network15 (CNN) for MNIST and CIFAR-10 tasks, respectively.

In the following Section 5.5.1, we briefly describe the computational complexity analysis

of the model learning process, including Forward Propagation (FP) and BP. Section 5.5.2

describes the experiment setup. In Section 5.5.3, under the same computation setup, we first

compare FedPMT with FedDrop [31] on MNIST dataset in terms of learning accuracy. Then,

we compare FedPMT with FedAvg on the CIFAR10 task regarding the training time for given

target accuracies.

5.5.1 Computational Complexity Analysis

We consider the model in floating-point format (i.e., 32 bits for each parameter), and the

operations in algorithms are floating-point operations. Following the similar analysis in [15,

Section IV-E], and supposing nx training samples in the calculation, we present the following
14FCNN model for MNIST task: 784× 400 Fully connected (Fc1) → 400× 300 Fully connected (Fc2) →

300× 200 Fully connected (Fc3) → 200× 100 Fully connected (Fc4) → 100× 10 Fully connected → Softmax.
All Fully connected layers are mapped by ReLu activation.

15CNN for MNIST task is constructed as below: 5× 5× 8 Convolutional → 2× 2 MaxPool → 5× 5× 16
Convolutional → 2× 2 MaxPool → 256× 128 Fully connected → 128× 10 Fully connected → Softmax.

CNN model for CIFAR10 task: 5 × 5 × 16 Convolutional (Conv1) → 2 × 2 MaxPool → 5 × 5 × 32
Convolutional (Conv2) → 2× 2 MaxPool → 800× 500 Fully connected (Fc1) → 500× 300 Fully connected
(Fc2) → 300× 10 Fully connected → Softmax.

All Fully connected layers are mapped by ReLu activation.
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complexity analysis.

FP for FCNN:

• The complexity of propagating from the input layer to the 2nd layer is represented as

O2,x = W2,1Z1,x, which has a complexity of O(n2 × n1 × nx), where Z,W,O represent

input, weight parameter, and output of one layer, respectively. The subscript {2, 1}

denotes the transition process between layers hereinafter, and nj is the number of

neurons of the j−th layer.

• The activation function Z2,x = f̄ac(O2,x) has a complexity of O(n2 × nx).

• The rest of the layers follow a similar analysis of the above steps.

BP for FCNN:

For output layer (i.e., o) to the 4th hidden layer (Fc4), we

• Compute the error signal e{o,x} at the output layer as eo,x = f̄ ′
ac(So,x) ⊛ (Zo,x − yo,x),

where Zo,x is the raw output signal of the last layer, f̄ ′
ac is the inverse activation function,

yo,x is the data label, and ⊛ represents element-wise multiplication.

• Compute the gradient Do,4 = eo,x × Zx,4, where Zx,4 is the transpose of Z4,x.

• Update the weight on the 4th layer Wo,4 = Wo,4 − ηtDo,4.

The complexity of the above operations is O(no × nx + no × nx + no × nx × n4 + no × n4).

For the 4th hidden layer (Fc4) to 3rd hidden layer (Fc3), we have e4,x = f̄ ′
ac(S4,x)⊛ (W4,x−

eo,x), then D4,3 = e4,x × Zx,3 and W4,3 = W4,3 − ηtD4,3, where W4,3 is the transpose of W3,4.

The complexity is O(n4 × nx + n4 × no × nx + n4 × nx × n3 + n4 × n3).

The BP complexity of the rest of the layers of FCNN can be derived by a similar analogy.

FP for CNN:

The complexity of convolutional layers is found in [102], which is O(nl−1 × s2
l × nl ×m2

l ),
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where l is the index of convolutional layer, nl indicates the number of filters in the l-th layer

(nl−1 is also known as the number of input channels in the l-th layer), sl is the spatial size

of the filter, and ml is the spatial size of the output feature map, which is calculated as

ml = (sx − sl + 2× padding)/stride+ 1) and sx is the size of input.

• Conv1: n0 = 3, n1 = 16, s1 = 5,m1 = (32 − 5 + 2 × 0)/1 + 1 = 28. Then, using the

max-pooling layer, the output feature size is 14× 14× 16.

• Conv2: n1 = 16, n2 = 32, s2 = 5,m2 = (14− 5 + 2× 0)/1 + 1 = 10. Then, using the

max-pooling layer, the output feature size is 5× 5× 32.

BP for CNN: From [102], the complexity of the BP process for convolutional layers is

roughly twice that of the FP process.

The FP and BP in the fully connected layer in CNN are the same as the cases in FCNN,

as discussed above.

The detailed computation is quantitively shown in Table 5.2, where several training

models with different model widths are provided. For example, |I| = 4 means four training

model widths are available for the server (or devices) to choose. In Table I, FP+BP (Full)

represents devices with the full model, and Full - Fc1 (BP) represents devices that do not

update the Fc1 layer. Full - Fc1 (BP) -Fc2 (BP) represents devices that do not update the

Fc1 and Fc2 layers, and so on and so forth. The computational complexity of models with

different model widths can be calculated according to the above discussion. Meanwhile, to

make a fair comparison, we set FedDrop [31] with the same computational complexity as

FedPMT.

5.5.2 Experiment Setup

Data heterogeneity: Two different data distribution settings are discussed, namely i.i.d.

and non-i.i.d. settings. For the i.i.d. setting, data samples on each device are randomly
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Table 5.2: Experiment setup to compare FedPMT and FedDrop. We set the same computational
complexity (or keep a higher computation capability for FedDrop in cases when exact same
complexity cannot be made) for FedPMT and FedDrop on each device to compare. rate in
FedDrop indicates that in order to keep the same computational complexity as FedPMT,
FedDrop needs to keep a percent of hidden layers’ neurons, compared with the full model.

Computational complexity of FCNN-MNIST (local epoch E = 1, batch size is 12)
Model Width (|I| = 4) FedPMT (ratio) FedDrop (dropout rate) [31]

Full - Fc1 (BP) - Fc2 (BP) - Fc3 (BP) 6473760 (42.3%) 6431556 (≈ 54%)
Full - Fc1 (BP) - Fc2 (BP) 7496160 (48.98%) 7579990 (≈ 61%)

Full - Fc1 (BP) 9779760 (63.9%) 9717454 (≈ 73%)
FP+BP (Full) 15305968 (100%) 100%

Model Width (|I| = 2)
Full - Fc1 (BP) 9779760 (63.9%) 9717454 (≈ 73%)
FP+BP (Full) 15305968 (100%) 100%

Computational complexity of CNN-MNIST (local epoch E = 1, batch size is 12)
Model Width (|I| = 4) PMT (ratio) FedDrop (dropout rate)

Full - Conv1(BP) - Conv2(BP) - Fc1 (BP) 745456 (40.8%) 1047049 (cap = 0.1)
Full - Conv1(BP) - Conv2(BP) 1188336 (65%) 1185944 (≈ 0.26)

Full - Conv1(BP) 1597936 (87.4%) 1593950 (≈ 0.73)
FP+BP (Full) 1828336 (100%) 1

Model Width (|I| = 2)
Full - Conv1(BP) 1597936 (87.4%) 1593950 (≈ 0.73)

FP+BP (Full) 1828336 (100%) 1
Computational complexity of CNN-CIFAR10 (local epoch E = 1, batch size is 20)

Model Width (|I| = 5) FedPMT (ratio) FedDrop (dropout rate) [31]
Full - Conv1(BP) - Conv2(BP) - Fc1 (BP) - Fc2 (BP) 12864200 (45.83%) 12885200 (≈ 40%)

Full - Conv1(BP) - Conv2(BP) - Fc1 (BP) 16077200 (57.27%) 16031980 (≈ 54%)
Full - Conv1(BP) - Conv2(BP) 24587200 (87.59%) 24677840 (≈ 88%)

Full - Conv1(BP) 26187200 (93.29%) 26069215 (≈ 93%)
FP+BP (Full) 28068800 (100%) 100%

Model Width (|I| = 2) FedPMT (ratio) FedDrop
Full - Conv1(BP) 26187200 (93.29%) 26069215 (≈ 93%)

FP+BP (Full) 28068800 (100%) 100%

selected from the training dataset. In the non-i.i.d. setting, data samples on each device

belong to 2 different classes, which are randomly selected from 10 classes. The data samples

on different devices form disjoint sets. We generate each setting and keep it fixed for different

experiments to avoid randomness brought by training samples. Each experiment is executed

with 10 random trails with fixed seeds in Pytorch.

For each experiment, a set of devices S is randomly selected in each global round from a

set of candidate devices K with |K| = 100. To better capture the impact of heterogeneous
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computation on FL learning performance, we assume that the number of selected devices with

the same computation capabilities is evenly distributed among |S|, e.g., |Si| = 10/|I|, i ∈ I,

in CIFAR10 experiments. The training setup is as follows,

MNIST: |Dk| = 300, ηt = 0.01, E = 1, |S| = 8.

CIFAR10: |Dk| = 500, ηt = 0.05, E = 1, |S| = 10.

FL Training time (CNN-CIFAR10 task)

κ setting: Since FedPMT targets reducing the training time for computation heterogeneous FL,

we set five different computation levels, 0.2Ψ, 0.25Ψ, 0.33Ψ, 0.5Ψ, 1Ψ, where 1Ψ represents

the maximum computation capability for a set of participating devices. For example, suppose

a device with 1Ψ can complete the local training in 10 seconds (i.e., Tcmp = ck·|Dk|·E
κk

= 10),

devices with 0.2Ψ takes 50 seconds to finish the same task.

c setting: The computation time in FedPMT is analyzed as follows: Since the devices with

model width smaller than full model width only need to update part of the whole model,

which makes ck smaller. For the case with five different model widths |I| = 5 (see Table 5.2),

the training models with the complexity ratio 0.46, 0.58, 0.88, 0.94, and 1 will be assigned

to devices with 0.2Ψ, 0.25Ψ, 0.33Ψ, 0.5Ψ, and 1Ψ, respectively. Therefore, the training time

consumption is 0.46×50s, 0.58×40s, 0.88×30s, 0.94×20s, and 1×10s, respectively (assuming

1Ψ can complete the local training of a full model in 10 seconds).

5.5.3 Empirical Results

We first compared FedPMT with a dropout-based algorithm, FedDrop [31], in scenarios where

different participating devices have different computational levels, reflected by different

|I|. Given the above setup, FedPMT generates different partial models for computation-

heterogeneous devices, where devices with small computation capacity will restrict gradient

from back-propagating to more shallow layers. While FedDrop[31] creates different par-
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Figure 5.2: Test accuracy over communication rounds of FedPMT and FedDrop with different
data heterogeneity and different computation levels in FL. From left to right, each column
corresponds to the learning result on FCNN-MNIST, CNN-MNIST, and CNN-CIFAR10
tasks, respectively. The upper and lower plots show the learning results for the i.i.d. and
non-i.i.d. scenarios, respectively.

tial models by removing varying numbers of neurons in hidden layers to match devices’

computation capabilities.

FedPMT outperforms FedDrop across different computation heterogeneity and data distri-

bution settings. Both FedPMT and FedDrop perform better in the cases with model width

|I| = 2, compared to cases with model width |I| = 4. The FL global model converges

faster since devices’ computation capabilities are generally higher in |I| = 2. With limited

computation power on devices, FedDrop randomly removes neurons in hidden layers, making
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model capacity small. While devices in FedPMT sacrifice shallow layers and prioritize the most

crucial layers, thus ensuring a better performance than FedDrop. Those non-prioritized layers

can still be updated in the model aggregation. The inaccuracy in shallow layers impacts

model performance less than that in deep layers (as seen in FedDrop). This observation is

more evident with non-i.i.d. data. FedPMT with model width |I| = 4 achieves more than 90%

accuracy, while FedDrop barely works with an accuracy lower than 60%. This is because

data samples share common features in the non-i.i.d. case, and each local classifier (the last

layer) is more sensitive to different data distributions. Given limited computation power, we

need to prioritize the crucial layers (near classifier) instead of evenly reducing the number

of neurons in hidden layers as done in FedDrop. In addition, regardless of the learning

completion time, FedAvg’s learning result is provided as an upper bound for different tasks.

FedAvg assumes homogeneous models across local devices and does not consider devices’

heterogeneous computation capabilities. As can be seen in Fig. 5.2, FedPMT with smaller

model widths (e.g., |I| = 2) achieves similar learning results as FedAvg for all i.i.d. and

non-i.i.d. cases. Among CNN model-related tasks, FedPMT achieves very competitive results

even for more computation heterogeneous scenarios (|I| = 4 or 5), although fluctuations

in the learning process are observed in non-i.i.d. scenarios, leaving the performance mar-

gin to FedAvg negligible, compared to extra computational complexity in FedAvg. For the

FCNN-MNIST task with more heterogeneous computation, there is a larger performance gap

between FedPMT and FedAvg. However, the proposed design still outperforms FedDrop with

a prominent performance gap.

Next, we compare FedPMT and FedAvg on completion time in FL. We consider two different

cases: 1) with a constraint (26.5 seconds)16, the computation time constraint is set in each

global round. Beyond this time stamp, the server aggregates the received models (without
16This constraint is set as the model training time spent by the devices with the longest completion time in

FedPMT, as calculated in 5.5.1.
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Table 5.3: Learning time comparison between different FL designs
constraint (26.5 seconds) without constraint

Accuracy FedPMT FedAvg FedPMT FedAvg

i.i.d.

50% 1064.8 1121.8 1029.6 1950

55% 1584 1732 1601.6 2800

60% 2270.4 2464.5 2217.6 4266.6

non-i.i.d.

40% 4136 4507 4174 4644

45% 6157 6604.4 6218.7 6577.7

50% 8251 8771.5 9234.1 10361

waiting for the rest) and moves to the next global round. 2) without constraint means the

server aggregates models after receiving all local models in each global round.

With a time constraint in each round, more devices in FedPMT can contribute to the global

model aggregation, even though models from devices with limited computation capabilities

are not completely updated. FedPMT is more effective in the non-i.i.d. case, where aggregating

more local models results in faster convergence, as also observed in [5, 21]. If no constraint

is set in each global round, FedPMT can complete the learning task in almost half the time,

compared to FedAvg (2217.6 seconds vs. 4266.6 seconds at 60% accuracy). Although FedAvg

obtains more accurate local models in each round, it is inefficient in terms of completion

time. In contrast, FedPMT achieves a better trade-off between model accuracy and completion

time.

5.6 Complete Proof

5.6.1 Proof of Lemma 2

For the ease of analysis, the gradient ∇Fk(wt
k, ξk) and ∇Fk(wt

k) are represented by gtk,i and

ḡtk,i in the following proof, where the subscript i in gtk,i indicates that the device k belongs to
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set Si.

From the definition of ∇F (wt), we have

∥∇F (wt)−∇F̄ (wt)∥2

= ∥
∑
i∈I

1
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

(gtk,i − ḡtk,i) ◦Υ|I|−i+1
k ∥2

1
≤ |I| ·

∑
i∈I

1
| ∪ Sj,j=i,··· ,|I||

∥
∑
k∈∪Sj

(gtk,i − ḡtk,i) ◦Υ|I|−i+1
k ∥2

2
≤
∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∥(gtk,i − ḡtk,i) ◦Υ|I|−i+1
k ∥2

3
≤
∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∥gtk,i − ḡtk,i∥2, (5.9)

where inequality 1 holds by Cauchy-Schwartz inequality, inequality 2 holds by Cauchy-

Schwartz inequality and ∪Sj,j=i,··· ,|I| ⊂ S,∀i ∈ I, and inequality 3 holds because the norm

of partial gradient is smaller than the norm of full gradient, i.e., ∥(gtk,i − ḡtk,i) ◦Υ|I|−i+1
k ∥2 <

∥(gtk,i − ḡtk,i)∥2 for all model width i ∈ I.
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Taking the expectation on both sides of (5.9), we have

E
[
∥∇F (wt)−∇F̄ (wt)∥2

]
≤E

∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∥gtk,i − ḡtk,i∥2


=
∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

E
[
∥gtk,i − ḡtk,i∥2

]
4
≤
∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈S

E
[
∥gtk,i − ḡtk,i∥2

]
5=
∑
i∈I

|I||S|
|S| ·∑|I|

j=i pj

∑
k∈S

E
[
∥gtk,i − ḡtk,i∥2

]

= 1
|S|

∑
i∈I

|I||S|∑|I|
j=i pj

∑
k∈S

δ2
k

≤ 2δ2∑
i∈I

|I||S|∑|I|
j=i pj

, (5.11)

where inequality 4 holds by ∪Sj,j=i,··· ,|I| ⊂ S,∀i ∈ I, and pj in the denominator in equality 5

is defined as the ratio between the number of devices in Sj and the number of participated

devices in a global round, i.e., |Sj |
|S| .

5.6.2 Proof of Lemma 3

By the definition of E[∇F (wt)] = ∇F̄ (wt), we have

∥wt+1 −w∗∥2

= ∥wt − ηt∇F (wt)−w∗ − ηt∇F̄ (wt) + ηt∇F̄ (wt)∥2

= ∥wt − ηt∇F̄ (wt)−w∗∥2︸ ︷︷ ︸
C1

+η2
t ∥∇F (wt)−∇F̄ (wt)∥2︸ ︷︷ ︸

C2

+ 2ηt⟨wt − ηt∇F̄ (wt)−w∗,∇F̄ (wt)−∇F (wt)⟩︸ ︷︷ ︸
C3

= ∥wt −w∗∥2 + η2
t ∥∇F̄ (wt)∥2 − 2ηt⟨wt −w∗,∇F̄ (wt)⟩+ η2

tC2 + C3. (5.12)
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• Bounding term η2
t ∥∇F̄ (wt)∥2

By the definition of ∇F̄ (wt), we have

∥∇F̄ (wt)∥2 = ∥
∑
i∈I

1
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∇Fk(wt
k) ◦Υ|I|−i+1

k ∥2

1,2,3
≤

∑
i∈I

|I||S|
| ∪ Sj,j=i,··· ,|I||

∑
k∈∪Sj

∥∇Fk(wt
k)∥2

4,5
≤ 1
|S|

∑
i∈I

|I||S|∑|I|
j=i pj

∑
k∈S
∥∇Fk(wt

k)∥2. (5.13)

∥∇Fk(wt
k)∥2 in equation (5.13) is bounded as follows. Given any models wt

k and w′
k

satisfying Assumption 2, we have Fk(w′
k)− Fk(wt

k)− (w′
k −wt

k)⊤∇Fk(wt
k) ≤ L

2 ∥w
′
k −wt

k∥2.

By defining w′
k = wt

k − 1
L
∇Fk(wt

k), we have Fk(w′
k)− Fk(wt

k) ≤ − 1
L

(∇Fk(wt
k))⊤∇Fk(wt

k) +
L
2

1
L2∥∇Fk(wt

k)∥2 ≤ − 1
2L∥∇Fk(w

t
k)∥2. Taking the minimal loss F ∗

k on device k, we have

∥∇Fk(wt
k)∥2 ≤ 2L(Fk(wt

k)− Fk(w′
k)) ≤ 2L(Fk(wt

k)− F ∗
k ). (5.14)

We use ψ to denote the constant ∑i∈I
|I||S|∑|I|

j=i
pj

hereinafter. As such, η2
t ∥∇F̄ (wt)∥2 is

bounded by combing (5.14) and (5.13), and we have

η2
t ∥∇F̄ (wt)∥2 ≤ 2|I|Lη2

tψ
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗

k ). (5.15)

• Bounding term −2ηt⟨wt −w∗,∇F̄ (wt)⟩.
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Again, by the definition of ∇F̄ (wt) and (5.4), we have

− 2ηt⟨wt −w∗,∇F̄ (wt)⟩

=− 2ηt⟨wt −w∗,
∑
k∈S

Ak ◦ ∇Fk(wt
k)⟩

=−2ηt
∑
k∈S
⟨wt −wt

k,
˜̃∇Fk(wt

k)⟩︸ ︷︷ ︸
C4.1

−2ηt
∑
k∈S
⟨wt

k −w∗, ˜̃∇Fk(wt
k)⟩︸ ︷︷ ︸

C4.2

. (5.16)

where ˜̃∇Fk(wt
k) = Ak ◦ ∇Fk(wt

k) is the result of local ground-truth gradient after layer-wise

multiplication with weight Ak.

Each term in C4.1 is bounded as follows: By Cauchy-Schwarz inequality, AM-GM inequality,

we have the first inequality hold in (5.17). The last inequality in (5.17) is achieved since

∥ ˜̃∇Fk(wt
k)∥2 = ∥Ak ◦ ∇Fk(wt

k)∥2 < ∥∇Fk(wt
k)∥2.

− 2ηt⟨wt −wt
k,

˜̃∇Fk(wt
k)⟩

≤ ηt(
1
ηt
∥wt −wt

k∥2 + ηt∥ ˜̃∇Fk(wt
k)∥2)

≤∥wt −wt
k∥2 + η2

t ∥∇Fk(wt
k)∥2. (5.17)

By Assumption 1 and Proposition 1, each term in C4.2 is bounded as

− 2ηt⟨wt
k −w∗, ˜̃∇Fk(wt

k)⟩

≤ 2ηtε
1
|S|

(
(−(Fk(wt

k)− Fk(w∗))− µ

2∥w
t
k −w∗∥2)

)
. (5.18)
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Based on the above intermediate results, −2ηt⟨wt −w∗,∇F̄ (wt)⟩ is bounded as

− 2ηt⟨wt −w∗,∇F̄ (wt)⟩

≤
∑
k∈S

(∥wt −wt
k∥2 + η2

t

|S|
|S|
∥∇Fk(wt

k)∥2 − 2ηtε
1
|S|

(Fk(wt
k)− Fk(w∗))− µηtε

1
|S|
∥wt

k −w∗∥2)

=− µηtε∥wt −w∗∥2 +
∑
k∈S

(∥wt −wt
k∥2 + η2

t

|S|
|S|
∥∇Fk(wt

k)∥2 − 2ηtε
1
|S|

(Fk(wt
k)− Fk(w∗)).

(5.19)

Inserting (5.14), (5.15), and (5.19) to (5.12), we have

∥wt+1 −w∗∥2 ≤ (1− ηtµ)∥wt −w∗∥2 +
∑
k∈S
∥wt −wt

k∥2 + η2
tC1 + C2

+ (2|I|Lη2
tψ + 2Lη2

t |S|)
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗

k )− 2ηtε
1
|S|

∑
k∈S

(Fk(wt
k)− Fk(w∗))︸ ︷︷ ︸

C5

.

(5.20)

Defining γt = 2ηt(ε − ηtL(|I|ψ + |S|)). In addition, we have ηt ≤ ε
2L(|I|ψ+|S|) and

ηtε ≤ γt ≤ 2ηtε. C5 is transformed as

C5

=− γt
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗

k ) + 2ηtε
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗

k )− 2ηtε
1
|S|

∑
k∈S

(Fk(wt
k)− Fk(w∗))

=− γt
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗

k + F ∗ − F ∗) + 2ηtε
1
|S|

∑
k∈S

(Fk(w∗)− F ∗
k )

=− γt
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗) + (2ηtε− γt)

1
|S|

∑
k∈S

(F ∗ − F ∗
k )

=− γt
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗) + 2Lη2

t (|I|ψ + |S|) 1
|S|

∑
k∈S

(F ∗ − F ∗
k )

=−γt
1
|S|

∑
k∈S

(Fk(wt
k)− F ∗)︸ ︷︷ ︸

C5.1

+2Lη2
t (|I|ψ + |S|)Λ, (5.21)

106



where Λ = 1
|S|
∑
k∈S F

∗ − F ∗
k measures the degree of non-i.i.d. in federated optimization. F ∗,

F ∗
k , and Fk(w∗) represent the optional global loss, the optional local loss on device k, and

the local loss on device k with optimal model w∗, respectively.

To bound C5.1, we have

1
|S|

∑
k∈S

(Fk(wt
k)− F ∗) = 1

|S|
∑
k∈S

(Fk(wt
k)− Fk(wt)) + 1

|S|
∑
k∈S

(Fk(wt)− F ∗)

≥ 1
|S|

∑
k∈S

(⟨∇Fk(wt),wt
k −wt⟩+ F (wt)− F ∗)

6
≥− 1

2
1
|S|

∑
k∈S

(ηt∥∇F̄k(wt)∥2 + 1
ηt
∥wt

k −wt∥2 + 1
|S|

∑
k∈S

(F (wt)− F ∗)

≥− 1
|S|

∑
k∈S

[ηtL(Fk(wt)− F ∗
k ) + 1

2ηt
∥wt

k −wt∥2 + F (wt)− F ∗],

(5.22)

where the first inequality results from the convexity of local loss Fk, inequality 6 holds by

AM-GM inequality, and the last inequality is achieved by (5.14).

By combing (5.22) and (5.21), C5 is bounded as

C5

≤ γt
1
|S|

∑
k∈S

[ηtL(Fk(wt)− F ∗
k ) + 1

2ηt
∥wt

k −wt∥2]− γt(F (wt)− F ∗) + 2Lη2
t (|I|ψ + |S|)Λ

= γt
1
|S|

∑
k∈S

[ηtL(Fk(wt)− F ∗ + F ∗ − F ∗
k ) + 1

2ηt
∥wt

k −wt∥2]− γt(F (wt)− F ∗)) + 2Lη2
t (|I|ψ + |S|)Λ

= γt(ηtL− 1) 1
|S|

∑
k∈S

(Fk(wt)− F ∗) + γt
2ηt

1
|S|

∑
k∈S
∥wt

k −wt∥2 + [γtηtL+ 2Lη2
t (|I|ψ + |S|)]Λ

≤ 1
|S|

∑
k∈S
∥wt

k −wt∥2 + 2Lη2
t (|I|ψ + |S|+ ε)Λ, (5.23)

where the last inequality achieves because: 1) We have γt > 0 since ηtε ≤ γt ≤ 2ηtε, and

ηtL − 1 = ε
2(|I|ψ+|S|) − 1 ≤ 0, so that γt(ηtL − 1) 1

|S|
∑
k∈S(Fk(wt) − F ∗) ≤ 0. 2) Since

ηtε ≤ γt ≤ 2ηtε, we have γt

2ηt

1
|S|
∑
k∈S ∥wt

k − wt∥2 < 1
|S|
∑
k∈S ∥wt

k − wt∥2 and [γtηtL +
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2Lη2
t (|I|ψ + |S|)]Λ < 2Lη2

t (|I|ψ + |S|+ ε)Λ.

By replacing term C5 of (5.20) with (5.23), taking the expectation on both sides of (5.20),

and leveraging the Lemma 2 to represent E[C1], we have

E∥wt+1 −w∗∥2

≤ (1− ηtµε)E∥wt −w∗∥2 + E
∑
k∈S
∥wt −wt

k∥2

+ E
1
|S|

∑
k∈S
∥wt

k −wt∥2 + η2
t (|I|ψ + |S|+ ε)Λ + E[η2

tC1] + EC2, (5.24)

• Bounding term E 1
|S|
∑
k∈S ∥wt

k −wt∥2.

Assume that between any two consecutive rounds, there is an aggregated model wt−1,r, 1 ≤

r ≤ τ , which is not achieved in reality since aggregation happens only after every τ local steps.

It is straightforward that wt−1,τ = wt. The learning rate η is fixed between two consecutive

rounds. With that, E∑k∈S
1

|S|∥w
t −wt

k∥2 is bounded as follows

E
∑
k∈S

1
|S|
∥wt −wt

k∥2 =E
∑
k∈S

1
|S|
∥(wt

k −wt−1,r)− (wt −wt−1,r)∥2

7
≤E

∑
k∈S

1
|S|
∥wt

k −wt−1,r∥2

8
≤
∑
k∈S

1
|S|

E
τ∑
j=r

(τ − r)η2
t−1∥∇Fk(w

t−1,j
k , ξk)∥2

9
≤
∑
k∈S

1
|S|

τ∑
j=r

(τ − r)η2
t−1G

2

≤
∑
k∈S

1
|S|

(τ − 1)2η2
t−1G

2

10
≤ 4η2

t (τ − 1)2G2 (5.25)

where the inequality 7 is from E∥X −EX∥2 ≤ E∥X∥2 [15] and the inequality 8 is achieved by

Jensen inequality ∥wt
k−wt−1,r∥2 = ∥∑τ

j=r ηt−1∇Fk(wt−1,j
k , ξk)∥2 ≤ (τ−r)∑τ

j=r η
2
t−1∥∇Fk(w

t−1,j
k , ξk)∥2.
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Inequality 9 is from Assumption 3, and the inequality 10 holds since ηt−1 ≤ 2ηt.

Analogously, we can bound E∑k∈S ∥wt −wt
k∥2 ≤ 4η2

t (τ − 1)2G2 in the same way.

By inserting (5.25) to (5.24), we have

E∥wt+1 −w∗∥2

≤(1− ηtµε)E∥wt −w∗∥2 + 8η2
t (τ − 1)2G2

+ 2Lη2
t (|I|ψ + |S|+ ε)Λ + 2η2

t δ
2ψ, (5.26)

where the inequality holds because E[C2] = E[2ηt⟨wt−ηt∇F̄ (wt)−w∗,∇F̄ (wt)−∇F (wt)⟩] = 0

due to E[∇F (wt)] = ∇F̄ (wt) and E[C1] = 2η2
t δ

2ψ by Lemma 2.

5.6.3 Proof of Theorem 5

From Lemma 3, it follows that Γt+1 ≤ (1− ηtµε)Γt + η2
t∆, where Γt+1 = E [∥wt+1 −w∗∥2],

Γt = E [∥wt −w∗∥2] and ∆ = 8(τ − 1)2G2 + 2L(|I|ψ + |S|+ ε)Λ + 2δ2ψ.

For a diminishing step size ηt = β
t+λ and for some λ > 0, β > 1

µ
such that ηt ≤ ε

2L(|I|ψ+|S|)

and ηt ≤ 2ηt+1, we aim to prove Γt ≤ χ
t+λ where χ = max{β2∆

βµε
− 1, (λ+ 1)Γ1}.

Firstly, the definition of χ ensures that Γt holds for t = 1. Assume that Γt ≤ χ
t+λ holds

for some t, we have

Γt+1 ≤ (1− ηtµε)Γt + η2
t∆

≤ (1− βµε

t+ λ
) χ

t+ λ
+ β2∆

(t+ λ)2

= t+ λ− 1
(t+ λ)2 χ+ [ β2∆

(t+ λ)2 −
βµε− 1
(t+ λ)2χ]

≤ χ

t+ λ+ 1 . (5.25)
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By the definition of χ, we have

χ = max{(λ+ 1)Γ1,
β2∆

βµε− 1} ≤ (λ+ 1)Γ1 + β2∆
βµε− 1 . (5.26)

Then, by choosing β = 2
µε

(ηt = 2
µε(t+λ) in the meantime) and L-smoothness property of

F , Theorem 5 is proven as

E
[
F (wT )− F (w∗)

]
≤ L

2 ΓT ≤
1

T + λ

(
(λ+ 1)Γ1

2 + 2∆
µ2ε2

)
. (5.27)

5.7 Summary

In this chapter, we have presented our model-heterogeneous FL design, FedPMT, which enables

computation-constrained devices to participate in federated learning and contribute to the

global model. As a partial model training strategy, FedPMT achieves sub-model training from

the backpropagation perspective. Unlike Dropout-based partial model training that randomly

removes neurons in hidden layers, FedPMT allows all participating devices to prioritize the

most crucial parts (deep layers) of the global model, ensuring a relatively large model capacity.

We have analyzed the convergence rate of FedPMT, which shows a similar convergence property

as FedAvg, with a slightly larger sub-optimality gap factored with a model splitting-related

constant. Our experimental results show that FedPMT consistently outperforms the state-of-

the-art Dropout-based algorithm, FedDrop. Meanwhile, FedPMT reaches the learning target in

a shorter completion time and achieves a better trade-off between the learning accuracy and

FL training time, compared to the widely adopted model-homogeneous benchmark, FedAvg.

110



Chapter 6

Conclusions and Further Research

In this chapter, we summarize the major research contributions and point out further research

directions.

6.1 Summary of the Thesis

This thesis aims at understanding and addressing the challenges of federated learning system

design in mobile edge networks. We target the statistical and system heterogeneity of

federated networks and build FL systems that fulfill the accuracy, efficiency, and robustness

requirements. Specifically, the main contributions of this research are summarized as follows:

• We propose an adaptive weighting strategy for federated learning with statistical het-

erogeneity to reduce the communication cost and expedite model training. Quantifying

local devices’ contribution by the relationship between the separately-trained local model

and the aggregated global model is fundamentally important for data-heterogeneous

FL, which remains unexplored. The main intuition is to measure the contribution of

the participating device based on the gradient information, then assign different weights

accordingly and adaptively at each communication round for global model aggregation.
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With theoretical analysis, we show how weighting impacts the expected training loss

decrement of the learning objective. Empirically, we evaluate the learning performance

of the proposed algorithm and compare it with the commonly adopted benchmark via

extensive experiments. While the algorithmic modification is minor and in a simple

full-participation setting, the proposed algorithm untangles the direction to speed up

FL training in non-i.i.d. scenarios by quantifying device contributions.

• We introduce a probabilistic device selection to support FL systems in large scale

and better balance the exploitation and exploration of candidate devices in federated

networks. Random device selection poses learning difficulty in non-i.i.d. datasets where

the misalignment between the global objective and local objectives exists. To align local

model updates with minimizing the global objective, we develop Optimal Aggregation

algorithm to determine the optimal subset to aggregate local model updates of partic-

ipating devices. By excluding the local updates with adverse contribution, the data

heterogeneity can be profiled, which will be further used to adjust the probability for

each device to be selected in the subsequent global rounds. The proposed algorithm in-

volves minor calculations on the server side, does not impose additional communication

costs, and is easy to implement in a scalable fashion.

• We develop a layerwise partial model training strategy to handle the computation

heterogeneity of candidate devices in federated networks. The implicit assumption that

all devices are capable of doing model training and exchanging model information is

unrealistic in building robust FL systems. To accommodate different types of devices

with heterogeneous computational capabilities, model-heterogeneous FL is proposed,

where participants are allowed to train models with different complexity (i.e., the subset

of a learning model). Unlike the existing methods using dropout or pruning based

sub-model generation, a novel layer-wise model-splitting method to match the device’s
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capability is proposed to mitigate the straggler effect. Theoretically, we find that the

proposed partial model training strategy achieves a similar convergence rate to FedAvg

in strongly convex and smoothness loss functions. However, by allowing adaptive partial

model allocation, all participating devices can contribute to the global model punctually,

making the task completion time shorter and the FL system robust to straggler effects

and training disruption.

6.2 Future Work

6.2.1 Personalized Federated Learning

Federated learning is initiated to learn one global model by leveraging information from

distributed edge devices in a privacy-preserving manner. To incentivize devices to participate

in the FL process for data augmentation, it is crucial that the resulting global model performs

better than the local models trained by the devices. However, this may not always be

guaranteed in scenarios with highly heterogeneous data. In addition, some FL applications,

such as recommendation systems and personalized advertisements, require customized results

for different devices [9], which is another critical factor in FL design. Overall, personalized

FL should achieve a better trade-off between the benefit of collaboration with other devices

and the negative effect caused by data heterogeneity across different devices’ domains.

Existing literature focuses on various perspectives to achieve personalized FL design,

including the variant of learning full model personalization (e.g., one global model based

on meta-learning [103–105], regularization methods [106–109]), and learning partial model

personalization (e.g., a shared global model with personalized Layers [110–112] and using

clustering based methods [81, 113, 114]). However, many of these algorithms involve additional

computation [103, 106, 107] or communication costs [113, 114] to edge devices, making the
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superiority of those personalized FL designs questionable. In response to this concern, we have

implemented the representative works mentioned above and achieved some preliminary results.

Our findings suggest that learning one global model and making local adaptations is generally

ineffective, especially for complex tasks. On the other hand, clustering methods generally

work well but at the cost of increased computation/communication. Since participating

devices are typically resource-constrained, the personalized representation approaches might

be good choices for the future, given the negotiable modification of the current FL design

and decent learning results.

Further, the following research directions might be of interest: 1) The standardization

of evaluating personalized FL is needed, including fair setups for the experiment, proper

datasets for comprehensive evaluation, and more criteria to measure the model performance.

2) Methods that can migrate the additional cost of learning the personalized information

to the server are promising, as demonstrated in [115]. 3) Exploring personalized FL in

heterogeneous models will be more beneficial and practical from the applicability perspective.

6.2.2 Model Diagnosis in Applicable Federated Learning

Most research in the FL context focuses on improving the training performance, leaving the

model evaluation step under-explored. To deploy the machine learning models for applications,

a model evaluation and feedback mechanism is needed to measure the model’s effectiveness,

such as MLOps (Machine Learning Operations) [116], which indicates whether the model is

satisfactory or requires further improvement.

Considering a classification or object detection task (e.g., autonomous cars scenario), model

evaluation is difficult without the label data, making it more complex in data-heterogeneous

distributed learning scenarios. Particularly, unlike the model evaluation in centralized machine

learning, the FL model targets more unseen devices. Two major challenges are involved:

114



1) the Out-of-domain (OOD) problem, i.e., the test distribution on new devices is likely

different from that of training devices; 2) the training data can not be accessed twice in

FL context due to the random device selection and device constraints. These challenges

make traditional accuracy estimation without label data inaccessible, including measuring

the difference between 1) train and test distributions [117], 2) the inference confidence on

train and test dataset [118], or learning multiple ensemble models for prediction [119]. In

addition, model evaluation on edge devices needs to adhere to the algorithm budget.

Given those challenges in FL model diagnosis, we sought to find effective methods that

work well in the general classification tasks. For instance, the ATC method [120] achieves

accuracy estimation by learning a threshold from the confidence score of model inference with

a limited amount of labeled data, as empirically observed. Further, it would be interesting

to form the connection between the size of observation space from labeled data and the

projection from the confidence score of model inference to accuracy estimation. With that,

one can achieve the trade-off between the assumption (the amount of labeled sample) and the

model evaluation result since applications have varying sensitivity to the model evaluation

results. Beyond the threshold-based accuracy estimation, it is crucial to consider performance

evaluation in other OOD scenarios, such as objective detection, which includes bounding box

positioning and classification.

6.2.3 Robustness in Federated Learning

Robustness to various kinds of heterogeneity encountered in practice, such as data heterogene-

ity, system heterogeneity, model heterogeneity, and malicious behaviors from training and

communication, is required for the development of federated learning and broader context,

trustworthy decentralized machine learning. The heterogeneity challenges and untrustworthy

behaviors that FL raises are diverse in multiple aspects, including but not limited to,
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• Training data heterogeneity. It is seen that the heterogeneity among candidate devices

in federated networks results in slow and unstable learning. Most of the existing works

address the data-invariant data heterogeneity problem. However, these approaches are

far from dealing with practical tasks in reality, where local data and data distribution

are changing, from both theoretical and applicable design perspectives. There is an early

attempt [121] that focuses on time-evolving heterogeneous data, but the theoretical

results are far from enough to address real-world challenges.

• Training system heterogeneity. To achieve a satisfying learning model with efficiency, the

system needs to handle the dynamically changing devices and communication networks.

Despite its prevalence and importance, research in this area is limited. It is important

to design the FL system from both the training level and coordination level. For

example, to deal with the behaviors of disappearing and straggling, one might build up

a reputation-based device scheduling mechanism [122], combining with advanced local

optimizers and an effective model aggregation scheme, even for model-heterogeneous

FL.

• Malicious behaviors. Most current FL systems assume participating devices are trusted

in training and communication, which might not be true in many real applications.

Collaborative learning systems can be manipulated by multiple parties in different steps

of learning [123], and the defense process may cause fairness problems among multiple

participants [107], e.g., simply filtering out the potentially risky devices that hold data

that are simply diverse from the average devices. This leads to an alarming fairness

counter-effect with regard to robustness. It would be of interest to consider robust FL

designs with guaranteed fairness for candidate devices and the interplay between the

constrains, including fairness, robustness, and efficiency.
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